A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0

  1. Jasenko Zivanov  Is a corresponding author
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. ALBA Synchrotron, Spain
  3. Birkbeck, University of London, United Kingdom
  4. University of Basel, Switzerland

Abstract

We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt series alignments, beam-induced motions of the particles throughout the tilt series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, in particular for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.

Data availability

We have only used previously published cryo-EM data sets for testing our software.Reconstructed maps and atomic models generated in this study have been submitted to the EMDB and PDB, with entry codes as indicated in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Jasenko Zivanov

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jasenko.zivanov@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8407-0759
  2. Joaquín Otón

    ALBA Synchrotron, Cerdanyola del Vallès, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2195-4730
  3. Zunlong Ke

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8408-850X
  4. Andriko von Kügelgen

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0017-2414
  5. Euan Pyle

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4633-4917
  6. Kun Qu

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Dustin Morado

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Daniel Castaño-Díez

    University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  9. Giulia Zanetti

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    Giulia Zanetti, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-0342
  10. Tanmay AM Bharat

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0168-0277
  11. John AG Briggs

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3990-6910
  12. Sjors HW Scheres

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-6540

Funding

UK Research and Innovation (MC_UP_A025_1013)

  • Sjors HW Scheres

UK Research and Innovation (MC_UP_1201/16)

  • John AG Briggs

European Research Council (ERC-CoG-2014 grant 648432)

  • John AG Briggs

European Research Council (ERC-StG-2019 grant 852915)

  • Giulia Zanetti

Swiss National Science Foundation (205321_179041/1)

  • Daniel Castaño-Díez

UK Research and Innovation (BBSRC grant BB/T002670/1)

  • Giulia Zanetti

European Research Council (ERC-AdG-2015 grant 692726)

  • Jasenko Zivanov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zivanov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasenko Zivanov
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres
(2022)
A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0
eLife 11:e83724.
https://doi.org/10.7554/eLife.83724

Share this article

https://doi.org/10.7554/eLife.83724

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.