Flexible coding of time or distance in hippocampal cells

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman  Is a corresponding author
  6. Genela Morris  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Boston University, United States

Abstract

Analysis of neuronal activity in the hippocampus of behaving animals has revealed cells acting as 'Time Cells', which exhibit selective spiking patterns at specific time intervals since a triggering event, and 'Distance Cells', which encode the traversal of specific distances. Other neurons exhibit a combination of these features, alongside place selectivity. This study aims to investigate how the task performed by animals during recording sessions influences the formation of these representations. We analyzed data from a treadmill running study conducted by Kraus et al.1 in which rats were trained to run at different velocities. The rats were recorded in two trial contexts: a 'fixed time' condition, where the animal ran on the treadmill for a predetermined duration before proceeding, and a 'fixed distance' condition, where the animal ran a specific distance on the treadmill. Our findings indicate that the type of experimental condition significantly influenced the encoding of hippocampal cells. Specifically, distance-encoding cells dominated in fixed-distance experiments, whereas time-encoding cells dominated in fixed-time experiments. These results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-representation of salient variables associated with reward conditions.

Data availability

The current manuscript is a re-analysis of data collected for a previously published paper (Kraus, Benjamin J., Robert J. Robinson II, John A. White, Howard Eichenbaum, and Michael E. Hasselmo. "Hippocampal "time cells": time versus path integration." Neuron 78, no. 6 (2013): 1090-1101).Data used in this paper is available as Matlab files on Dryad:Abramson, Shai et al. (2022), Data for Time or distance: predictive coding of Hippocampal cells, Dryad, Dataset, https://doi.org/10.5061/dryad.ngf1vhhxp

The following previously published data sets were used

Article and author information

Author details

  1. Shai Abramson

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin J Kraus

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John A White

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1073-2638
  4. Michael E Hasselmo

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dori Derdikman

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    derdik@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3677-6321
  6. Genela Morris

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    gmorris@sci.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-8977

Funding

Israel Science Foundation (2183/21)

  • Dori Derdikman

Binational Science Foundation -NIH CRCNS (BSF:2019807 (NIH: 1R01 MH125544-01 ))

  • Dori Derdikman

Prince Center for the Aging Brain

  • Dori Derdikman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Abramson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,608
    views
  • 297
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman
  6. Genela Morris
(2023)
Flexible coding of time or distance in hippocampal cells
eLife 12:e83930.
https://doi.org/10.7554/eLife.83930

Share this article

https://doi.org/10.7554/eLife.83930

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.