Sensory experience controls dendritic structure and behavior by distinct pathways involving degenerins

  1. Sharon Inberg
  2. Yael Iosilevskii
  3. Alba Calatayud-Sanchez
  4. Hagar Setty
  5. Meital Oren-Suissa
  6. Michael Krieg
  7. Benjamin Podbilewicz  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Institute of Photonic Sciences, Spain
  3. Weizmann Institute of Science, Israel

Abstract

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. Strains, plasmids and other reagents are available upon request .

Article and author information

Author details

  1. Sharon Inberg

    Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yael Iosilevskii

    Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Alba Calatayud-Sanchez

    Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Hagar Setty

    Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Meital Oren-Suissa

    Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Krieg

    Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Benjamin Podbilewicz

    Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    podbilew@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0411-4182

Funding

Israel Science Foundation (442/12)

  • Benjamin Podbilewicz

Israel Science Foundation (257/17)

  • Benjamin Podbilewicz

Adelis Fund (2023479)

  • Benjamin Podbilewicz

Ministry of Science and Technology, Israel (3-13022)

  • Benjamin Podbilewicz

MCIN /AEI /10.13039/501100011033 / FEDER, UE (PID2021-123812OB-I00)

  • Michael Krieg

MCIN /AEI /10.13039/501100011033 / FEDER, UE (CNS2022-135906)

  • Michael Krieg

Human Frontier Science Program (RGP021/2023)

  • Michael Krieg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2025, Inberg et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 905
    views
  • 129
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sharon Inberg
  2. Yael Iosilevskii
  3. Alba Calatayud-Sanchez
  4. Hagar Setty
  5. Meital Oren-Suissa
  6. Michael Krieg
  7. Benjamin Podbilewicz
(2025)
Sensory experience controls dendritic structure and behavior by distinct pathways involving degenerins
eLife 14:e83973.
https://doi.org/10.7554/eLife.83973

Share this article

https://doi.org/10.7554/eLife.83973

Further reading

    1. Neuroscience
    Muad Y Abd El Hay, Gretel B Kamm ... Jan Siemens
    Research Article

    The perception of innocuous temperatures is crucial for thermoregulation. The TRP ion channels TRPV1 and TRPM2 have been implicated in warmth detection, yet their precise roles remain unclear. A key challenge is the low prevalence of warmth-sensitive sensory neurons, comprising fewer than 10% of rodent dorsal root ganglion (DRG) neurons. Using calcium imaging of >20,000 cultured mouse DRG neurons, we uncovered distinct contributions of TRPV1 and TRPM2 to warmth sensitivity. TRPV1’s absence – and to a lesser extent absence of TRPM2 – reduces the number of neurons responding to warmth. Additionally, TRPV1 mediates the rapid, dynamic response to a warmth challenge. Behavioural tracking in a whole-body thermal preference assay revealed that these cellular differences shape nuanced thermal behaviours. Drift diffusion modelling of decision-making in mice exposed to varying temperatures showed that TRPV1 deletion impairs evidence accumulation, reducing the precision of thermal choice, while TRPM2 deletion increases overall preference for warmer environments that wildtype mice avoid. It remains unclear whether TRPM2 in DRG sensory neurons or elsewhere mediates thermal preference. Our findings suggest that different aspects of thermal information, such as stimulation speed and temperature magnitude, are encoded by distinct TRP channel mechanisms.

    1. Neuroscience
    Ning Wang, Yimeng Wang ... Dong Ming
    Research Article

    The experience-dependent spatial cognitive process requires sequential organization of hippocampal neural activities by theta rhythm, which develops to represent highly compressed information for rapid learning. However, how the theta sequences were developed in a finer timescale within theta cycles remains unclear. In this study, we found in rats that sweep-ahead structure of theta sequences developing with exploration was predominantly dependent on a relatively large proportion of FG-cells, that is a subset of place cells dominantly phase-locked to fast gamma rhythms. These ensembles integrated compressed spatial information by cells consistently firing at precessing slow gamma phases within the theta cycle. Accordingly, the sweep-ahead structure of FG-cell sequences was positively correlated with the intensity of slow gamma phase precession, in particular during early development of theta sequences. These findings highlight the dynamic network modulation by fast and slow gamma in the development of theta sequences which may further facilitate memory encoding and retrieval.