Smoking, Alcohol consumption, and 24 Gastrointestinal Diseases: Mendelian Randomization Analysis

  1. Shuai Yuan
  2. Jie Chen
  3. Xixian Ruan
  4. Yuhao Sun
  5. Ke Zhang
  6. Xiaoyan Wang  Is a corresponding author
  7. Xue Li  Is a corresponding author
  8. Dipender Gill
  9. Stephen Burgess
  10. Edward Giovannucci
  11. Susanna C Larsson
  1. Karolinska Institute, Sweden
  2. Second Affiliated Hospital of Zhejiang University, China
  3. Central South University, China
  4. Westlake University, China
  5. Zhejiang University, China
  6. Imperial College London, United Kingdom
  7. University of Cambridge, United Kingdom
  8. Harvard TH Chan School of Public Health, United States

Abstract

Background: Whether the positive associations of smoking and alcohol consumption with gastrointestinal diseases are causal is uncertain. We conducted this Mendelian randomization (MR) to comprehensively examine associations of smoking and alcohol consumption with common gastrointestinal diseases.

Methods: Genetic variants associated with smoking initiation and alcohol consumption at the genome-wide significance level were selected as instrumental variables. Genetic associations with 24 gastrointestinal diseases were obtained from the UK Biobank, FinnGen study, and other large consortia. Univariable and multivariable MR analyses were conducted to estimate the overall and independent MR associations after mutual adjustment for genetic liability to smoking and alcohol consumption.

Results: Genetic predisposition to smoking initiation was associated with increased risk of 20 of 24 gastrointestinal diseases, including 7 upper gastrointestinal diseases (gastroesophageal reflux, esophageal cancer, gastric ulcer, duodenal ulcer, acute gastritis, chronic gastritis and gastric cancer), 4 lower gastrointestinal diseases (irritable bowel syndrome, diverticular disease, Crohn's disease and ulcerative colitis), 8 hepatobiliary and pancreatic diseases (non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis, liver cancer, cholecystitis, cholelithiasis, acute and chronic pancreatitis), and acute appendicitis. Fifteen out of 21 associations persisted after adjusting for genetically-predicted alcohol consumption. Genetically-predicted higher alcohol consumption was associated with increased risk of duodenal cancer, alcoholic liver disease, cirrhosis, and chronic pancreatitis; however, the association for duodenal ulcer did not remain after adjustment for genetic predisposition to smoking initiation.

Conclusion: This study provides MR evidence supporting causal associations of smoking with a broad range of gastrointestinal diseases, whereas alcohol consumption was associated with only a few gastrointestinal diseases.

Funding: The Natural Science Fund for Distinguished Young Scholars of Zhejiang Province; National Natural Science Foundation of China; Key Project of Research and Development Plan of Hunan Province; the Swedish Heart Lung Foundation; the Swedish Research Council; the Swedish Cancer Society.

Data availability

Data analyzed in the current study are publicly available GWAS summary-level data. The specific information and link could be found in Table S1. The code and curated data for the current analysis are available at https://github.com/XixianRuan/smoking_gi.

The following previously published data sets were used

Article and author information

Author details

  1. Shuai Yuan

    Institute of Environmental Medicine, Karolinska Institute, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jie Chen

    Second Affiliated Hospital of Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4029-4192
  3. Xixian Ruan

    Department of Gastroenterology, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4937-9168
  4. Yuhao Sun

    Second Affiliated Hospital of Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ke Zhang

    Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyan Wang

    Department of Gastroenterology, Central South University, Changsha, China
    For correspondence
    wangxiaoyan@csu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7281-1078
  7. Xue Li

    Usher Institute, Zhejiang University, Hangzhou, China
    For correspondence
    xue.li@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6880-2577
  8. Dipender Gill

    Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Stephen Burgess

    MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5365-8760
  10. Edward Giovannucci

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Susanna C Larsson

    Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (81970494)

  • Xiaoyan Wang

Key Project of Research and Development Plan of Hunan Province (2019SK2041)

  • Xiaoyan Wang

Hjärt-Lungfonden (20210351)

  • Susanna C Larsson

Vetenskapsrådet (2019-00977)

  • Susanna C Larsson

Cancerfonden

  • Susanna C Larsson

Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001)

  • Xue Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Included studies had been approved by corresponding institutional review boards and ethical committees, and consent forms had been signed by all participants.

Copyright

© 2023, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,077
    views
  • 916
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuai Yuan
  2. Jie Chen
  3. Xixian Ruan
  4. Yuhao Sun
  5. Ke Zhang
  6. Xiaoyan Wang
  7. Xue Li
  8. Dipender Gill
  9. Stephen Burgess
  10. Edward Giovannucci
  11. Susanna C Larsson
(2023)
Smoking, Alcohol consumption, and 24 Gastrointestinal Diseases: Mendelian Randomization Analysis
eLife 12:e84051.
https://doi.org/10.7554/eLife.84051

Share this article

https://doi.org/10.7554/eLife.84051

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article Updated

    Background:

    The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).

    Methods:

    Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.

    Results:

    Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).

    Conclusions:

    Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding:

    Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.