National Institutes of Health research project grant inflation 1998 to 2021

  1. Michael S Lauer  Is a corresponding author
  2. Joy Wang
  3. Deepshikha Roychowdhury
  1. National Institutes of Health, United States

Abstract

We analyzed changes in total costs for National Institutes of Health (NIH) awarded Research Project Grants (RPG) issued from fiscal years (FYs) 1998 to 2003. Costs are measured in 'nominal' terms, meaning exactly as stated, or in 'real' terms, meaning after adjustment for inflation. The NIH uses a data-driven price index - the Biomedical Research and Development Price Index (BRDPI) - to account for inflation, enabling assessment of changes in real (that is, BRDPI-adjusted) costs over time. The BRDPI was higher than the general inflation rate from FY1998 until FY2012; since then the BRDPI has been similar to the general inflation rate likely due to caps on senior faculty salary support. Despite increases in nominal costs, recent years have seen increases in the absolute numbers of RPG and R01 awards. Real average and median RPG costs increased during the NIH-doubling (FY1998 to FY2003), decreased after the doubling and have remained relatively stable since. Of note, though, the degree of variation of RPG costs has changed over time, with more marked extremes observed on both higher and lower levels of cost. On both ends of the cost spectrum, the agency is funding a greater proportion of solicited projects, with nearly half of RPG money going towards solicited projects. After adjusting for confounders, we find no independent association of time with BRDPI-adjusted costs; in other words, changes in real costs are largely explained by changes in the composition of the NIH-grant portfolio.

Data availability

Anonymized source data (in Excel and .RData formats) have been provided as supplementary files. R markdown source code for the main paper and the appendix corresponds with all numbers, tables, and figures. There are no restrictions to use.

Article and author information

Author details

  1. Michael S Lauer

    Office of the Director, National Institutes of Health, Bethesda, United States
    For correspondence
    Michael.Lauer@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9217-8177
  2. Joy Wang

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Deepshikha Roychowdhury

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

All authors are employees of the National Institutes of Health and prepared this manuscript as part of their official duties.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,705
    views
  • 173
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael S Lauer
  2. Joy Wang
  3. Deepshikha Roychowdhury
(2023)
National Institutes of Health research project grant inflation 1998 to 2021
eLife 12:e84245.
https://doi.org/10.7554/eLife.84245

Share this article

https://doi.org/10.7554/eLife.84245

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.