Dynamics of co-substrate pools can constrain and regulate metabolic fluxes

  1. Robert West
  2. Hadrien Delattre
  3. Elad Noor
  4. Elisenda Feliu  Is a corresponding author
  5. Orkun Soyer  Is a corresponding author
  1. University of Warwick, United Kingdom
  2. Weizmann Institute of Science, Israel
  3. University of Copenhagen, Denmark

Abstract

Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.

Data availability

All data and models are made available via a dedicated repository (https://doi.org/10.5281/zenodo.7565439) and the following Github page: https://github.com/OSS-Lab/CoSubstrateDynamics/tree/v1.0.0

The following data sets were generated

Article and author information

Author details

  1. Robert West

    School of Life Sciences, University of Warwick, Warwick, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hadrien Delattre

    School of Life Sciences, University of Warwick, Warwick, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Elad Noor

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Elisenda Feliu

    Department of Mathematics, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    efeliu@math.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7205-6511
  5. Orkun Soyer

    School of Life Sciences, University of Warwick, Warwick, United Kingdom
    For correspondence
    O.Soyer@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9504-3796

Funding

Biotechnology and Biological Sciences Research Council (BB/T010150/1))

  • Robert West
  • Hadrien Delattre
  • Orkun Soyer

Novo Nordisk (F18OC0052483)

  • Elisenda Feliu

Gordon and Betty Moore Foundation (GBMF9200)

  • Orkun Soyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, West et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 947
    views
  • 202
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert West
  2. Hadrien Delattre
  3. Elad Noor
  4. Elisenda Feliu
  5. Orkun Soyer
(2023)
Dynamics of co-substrate pools can constrain and regulate metabolic fluxes
eLife 12:e84379.
https://doi.org/10.7554/eLife.84379

Share this article

https://doi.org/10.7554/eLife.84379

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.