Ventral striatum dopamine release encodes unique properties of visual stimuli in mice
Abstract
The mesolimbic dopamine system is an evolutionarily conserved set of brain circuits that plays a role in attention, appetitive behavior, and reward processing. In this circuitry, ascending dopaminergic projections from the ventral midbrain innervate targets throughout the limbic forebrain, such as the ventral striatum/nucleus accumbens (NAc). Dopaminergic signaling in the NAc has been widely studied for its role in behavioral reinforcement, reward prediction error encoding, and motivational salience. Less well characterized is the role of dopaminergic neurotransmission in the response to surprising or alerting sensory events. To address this, we used the genetically encoded dopamine sensor dLight1 and fiber photometry to explore the ability of striatal dopamine release to encode the properties of salient sensory stimuli in mice, such as threatening looming discs. Here, we report that lateral NAc (LNAc) dopamine release encodes the rate and magnitude of environmental luminance changes rather than visual stimulus threat level. This encoding is highly sensitive, as LNAc dopamine could be evoked by light intensities that were imperceptible to human experimenters. We also found that light-evoked dopamine responses are wavelength-dependent at low irradiances, independent of the circadian cycle, robust to previous exposure history, and involve multiple phototransduction pathways. Thus, we have further elaborated the mesolimbic dopamine system's ability to encode visual information in mice, which is likely relevant to a wide body of scientists employing light sources or optical methods in behavioral research involving rodents.
Data availability
Viral vector plasmids used in this study are available on Addgene. Codes used for fiber photometry signal extraction and analysis are available at https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/FibPhoEpocAveraging/. Codes used for visual stimulus generation are available at https://github.com/jelliottrobinson/Robinson_Lab. Source data is available in the provided Supplemental Data and Statistical Analysis file.
Article and author information
Author details
Funding
Simons Foundation Autism Research Initiative (BTI Award 663007)
- J Elliott Robinson
Gilbert Family Foundation (Team Science Award)
- J Elliott Robinson
Cincinnati Children's Research Foundation (Trustee Award)
- J Elliott Robinson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal husbandry and experimental procedures involving animal subjects were conducted in compliance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and approved by the Institutional Animal Care and Use Committee (IACUC) and by the Department of Veterinary Services at Cincinnati Children's Hospital Medical Center (CCHMC) under IACUC protocol 2020-0058.
Copyright
© 2023, Gonzalez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,601
- views
-
- 326
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
- Physics of Living Systems
Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.
-
- Neuroscience
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.