Associations of four biological age markers with child development: a multi-omic analysis in the European HELIX cohort
Abstract
Background: While biological age in adults is often understood as representing general health and resilience, the conceptual interpretation of accelerated biological age in children and its relationship to development remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through two established biological age indicators, telomere length and DNA methylation age, and two novel candidate biological age indicators , to child developmental outcomes, including growth and adiposity, cognition, behaviour, lung function and onset of puberty, among European school-age children participating in the HELIX exposome cohort.
Methods: The study population included up to 1,173 children, aged between 5 and 12 years, from study centres in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through qPCR, blood DNA methylation and gene expression was measured using microarray, and proteins and metabolites were measured by a range of targeted assays. DNA methylation age was assessed using Horvath's skin and blood clock, while novel blood transcriptome and 'immunometabolic' (based on plasma protein and urinary and serum metabolite data) clocks were derived and tested in a subset of children assessed six months after the main follow-up visit. Associations between biological age indicators with child developmental measures as well as health risk factors were estimated using linear regression, adjusted for chronological age, sex, ethnicity and study centre. The clock derived markers were expressed as Δ age (i.e., predicted minus chronological age).
Results: Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r= 0.93 and r= 0.84 respectively). Generally, weak correlations were observed, after adjustment for chronological age, between the biological age indicators. Among associations with health risk factors, higher birthweight was associated with greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age and high family affluence with longer telomere length. Among associations with child developmental measures, all biological age markers were associated with greater BMI and fat mass, and all markers except telomere length were associated with greater height, at least at nominal significance (p<0.05). Immunometabolic Δ age was associated with better working memory (p = 4e -3) and reduced inattentiveness (p= 4e -4), while DNA methylation Δ age was associated with greater inattentiveness (p=0.03) and poorer externalizing behaviours (p= 0.01). Shorter telomere length was also associated with poorer externalizing behaviours (p=0.03).
Conclusions: In children, as in adults, biological ageing appears to be a multi-faceted process and adiposity is an important correlate of accelerated biological ageing. Patterns of associations suggested that accelerated immunometabolic age may be beneficial for some aspects of child development while accelerated DNA methylation age and telomere attrition may reflect early detrimental aspects of biological ageing, apparent even in children.
Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement numbers: 308333; 874583).
Data availability
Due to data protection regulations in each participating country and participant data use agreements, human subject data used in this project cannot be freely shared. The raw data supporting the current study are available on request subject to ethical and legislative review. The "HELIX Data External Data Request Procedures" are available with the data inventory in this website: http://www.projecthelix.eu/data-inventory. The document describes who can apply to the data and how, the timings for approval and the conditions to data access and publication. Researchers who have an interest in using data from this project for reproducibility or in using data held in general in the HELIX data warehouse for research purposes can apply for access to data. Interested researchers should fill in the application protocol found in ANNEX I at https://www.projecthelix.eu/files/helix_external_data_request_procedures_final.pdf and send this protocol to helixdata@isglobal.org. The applications are received by the HELIX Coordinator, and are processed and approved by the HELIX Project Executive Committee. All code used for data analysis has been provided as supplementary material. Deidentified dataset for generation of figures 1 and 2 has been provided as a supplementary dataset.
Article and author information
Author details
Funding
UK Research and Innovation (MR/S03532X/1)
- Oliver Robinson
- Chung-Ho E Lau
European Commission (308333; 874583)
- Oliver Robinson
- Chung-Ho E Lau
- Sandra Andrusaityte
- Eva Borras
- Paula de Prado-Bert
- Lida Chatzi
- Hector C Keun
- Regina Grazuleviciene
- Kristine Bjerve Gutzkow
- Lea Maitre
- Dries S Martens
- Eduard Sabido
- Valérie Siroux
- Jose Urquiza
- Marina Vafeiadi
- John Wright
- Tim S Nawrot
- Mariona Bustamante
- Martine Vrijheid
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Prior to the start of HELIX, all six cohorts had undergone the required evaluation by national ethics committees and obtained all the required permissions for their cohort recruitment and follow-up visits. Each cohort also confirmed that relevant informed consent and approval were in place for secondary use of data from pre-existing data. The work in HELIX was covered by new ethical approvals in each country and at enrolment in the new follow-up, participants were asked to sign a new informed consent form. Additionally, the current study was approved by the Imperial College Research Ethics Committee (Reference: 19IC5567).
Copyright
© 2023, Robinson et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,640
- views
-
- 257
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
-
- Computational and Systems Biology
- Genetics and Genomics
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.