Functional and microstructural plasticity following social and interoceptive mental training

  1. Sofie Louise Valk  Is a corresponding author
  2. Philipp Kanske
  3. Bo-yong Park
  4. Seok-Jun Hong
  5. Anne Böckler
  6. Fynn-Mathis Trautwein
  7. Boris C Bernhardt  Is a corresponding author
  8. Tania Singer
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Technische Universität Dresden, Germany
  3. Inha University, Republic of Korea
  4. Institute for Basic Science, Republic of Korea
  5. University of Würzburg, Germany
  6. University of Freiburg, Germany
  7. McGill University, Canada
  8. Max Planck Society, Germany

Abstract

The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills.

Data availability

In line with EU data regulations (General Data Protection Regulation, GDPR), we regret that data cannot be shared publicly because we did not obtain explicit participant agreement for data-sharing with third parties. Our work is based on personal data (age, sex, and neuroimaging data) that could be matched to individuals. The data is therefore pseudonominized rather than anonymized and falls under the GDPR. Data are available upon request (contact via valk@cbs.mpg.de). Summary data and analysis scripts (Matlab and python) to reproduce primary analyses and figures are publicly available on GitHub (https://github.com/CNG-LAB/social_function_structure_change), and raw data-plots are provided for network-level analyses. To construct gradients, we used the brainspace package, available at brainspace.readthedocs.io. To construct intra-cortical myelin profiles code is available at micapipe.readthedocs.io. Meta-analytical functional MRI maps are downloaded from neurosynth.org and available on GitHub.

Article and author information

Author details

  1. Sofie Louise Valk

    Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    valk@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  2. Philipp Kanske

    Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2027-8782
  3. Bo-yong Park

    Department of Data Science, Inha University, Incheon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7096-337X
  4. Seok-Jun Hong

    Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1847-578X
  5. Anne Böckler

    Department of Psychology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fynn-Mathis Trautwein

    Department of Psychosomatic Medicine and Psychotherapy, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9928-0193
  7. Boris C Bernhardt

    Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041
  8. Tania Singer

    Social Neuroscience Lab, Max Planck Society, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (205557)

  • Tania Singer

Natural Sciences and Engineering Research Council of Canada (Discovery-1304413)

  • Boris C Bernhardt

Canadian Institutes of Health Research (CIHR FDN-154298)

  • Boris C Bernhardt

Sick Kids Foundation (NI17-039)

  • Boris C Bernhardt

Azrieli Foundation (ACAR-TACC)

  • Boris C Bernhardt

Canada Research Chairs (Tier 2)

  • Boris C Bernhardt

Molson Foundation

  • Bo-yong Park

Fonds de recherche du Québec

  • Bo-yong Park

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent and the study was approved by the Research Ethics Committees of the University of Leipzig (#376/12-ff) and Humboldt University in Berlin (#2013-02, 2013-29, 2014-10).

Copyright

© 2023, Valk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    views
  • 306
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sofie Louise Valk
  2. Philipp Kanske
  3. Bo-yong Park
  4. Seok-Jun Hong
  5. Anne Böckler
  6. Fynn-Mathis Trautwein
  7. Boris C Bernhardt
  8. Tania Singer
(2023)
Functional and microstructural plasticity following social and interoceptive mental training
eLife 12:e85188.
https://doi.org/10.7554/eLife.85188

Share this article

https://doi.org/10.7554/eLife.85188

Further reading

    1. Neuroscience
    Hendrik Heinbockel, Gregor Leicht ... Lars Schwabe
    Research Article

    When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval. In a three-day study, we measured brain activity using fMRI during initial encoding, 24 hr-delayed memory cueing followed by pharmacological elevations of glucocorticoid or noradrenergic activity, and final recall. While post-retrieval glucocorticoids did not affect subsequent memory, the impairing effect of noradrenergic arousal on final recall depended on hippocampal reactivation and category-level reinstatement in the ventral temporal cortex during memory cueing. These effects did not require a reactivation of the original memory trace and did not interact with offline reinstatement during rest. Our findings demonstrate that, depending on the retrieval-related neural reactivation of memories, noradrenergic arousal after retrieval can alter the future accessibility of consolidated memories.

    1. Neuroscience
    Rituja S Bisen, Fathima Mukthar Iqbal ... Jan M Ache
    Research Article

    Insulin plays a key role in metabolic homeostasis. Drosophila insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings. We found that the nutritional state strongly modulates IPC activity. IPC activity decreased with increasing periods of starvation. Refeeding flies with glucose or fructose, two nutritive sugars, significantly increased IPC activity, whereas non-nutritive sugars had no effect. In contrast to feeding, glucose perfusion did not affect IPC activity. This was reminiscent of the mammalian incretin effect, where glucose ingestion drives higher insulin release than intravenous application. Contrary to IPCs, Diuretic hormone 44-expressing neurons in the pars intercerebralis (DH44PINs) responded to glucose perfusion. Functional connectivity experiments demonstrated that these DH44PINs do not affect IPC activity, while other DH44Ns inhibit them. Hence, populations of autonomously and systemically sugar-sensing neurons work in parallel to maintain metabolic homeostasis. Accordingly, activating IPCs had a small, satiety-like effect on food-searching behavior and reduced starvation-induced hyperactivity, whereas activating DH44Ns strongly increased hyperactivity. Taken together, we demonstrate that IPCs and DH44Ns are an integral part of a modulatory network that orchestrates glucose homeostasis and adaptive behavior in response to shifts in the metabolic state.