Characterization of caffeine response regulatory variants in vascular endothelial cells

  1. Carly Boye
  2. Cynthia A Kalita
  3. Anthony S Findley
  4. Adnan Alazizi
  5. Julong Wei
  6. Xiaoquan Wen
  7. Roger Pique-Regi
  8. Francesca Luca  Is a corresponding author
  1. Wayne State University, United States
  2. University of Michigan-Ann Arbor, United States

Abstract

Genetic variants in gene regulatory sequences can modify gene expression and mediate the molecular response to environmental stimuli. In addition, genotype-environment interactions (GxE) contribute to complex traits such as cardiovascular disease. Caffeine is the most widely consumed stimulant and is known to produce a vascular response. To investigate GxE for caffeine, we treated vascular endothelial cells with caffeine and used a massively parallel reporter assay to measure allelic effects on gene regulation for over 43,000 genetic variants. We identified 665 variants with allelic effects on gene regulation and 29 variants that regulate the gene expression response to caffeine (GxE, FDR<10%). When overlapping our GxE results with eQTLs colocalized with CAD and hypertension, we dissected their regulatory mechanisms and showed a modulatory role for caffeine. Our results demonstrate that massively parallel reporter assay is a powerful approach to identify and molecularly characterize GxE in the specific context of caffeine consumption.

Data availability

FASTQ files and read count data are available at the GEO accession number GSE221514

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Carly Boye

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cynthia A Kalita

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony S Findley

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9922-3076
  4. Adnan Alazizi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julong Wei

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoquan Wen

    Department of Biostatistics, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  8. Francesca Luca

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    fluca@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-9052

Funding

National Institute of General Medical Sciences (R01GM109215)

  • Roger Pique-Regi
  • Francesca Luca

National Institute of Environmental Health Sciences (R01ES033634)

  • Xiaoquan Wen
  • Roger Pique-Regi
  • Francesca Luca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Boye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 724
    views

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carly Boye
  2. Cynthia A Kalita
  3. Anthony S Findley
  4. Adnan Alazizi
  5. Julong Wei
  6. Xiaoquan Wen
  7. Roger Pique-Regi
  8. Francesca Luca
(2024)
Characterization of caffeine response regulatory variants in vascular endothelial cells
eLife 13:e85235.
https://doi.org/10.7554/eLife.85235

Share this article

https://doi.org/10.7554/eLife.85235

Further reading

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.