Abstract

For at least two centuries, scientists have been enthralled by the 'zombie' behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the recently established Entomophthora muscae-Drosophila melanogaster 'zombie fly' system to reveal the molecular and cellular underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a new, high-throughput behavior assay to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), who are solely responsible for juvenile hormone (JH) synthesis and release. Summiting is a fleeting phenomenon, posing a challenge for physiological and biochemical experiments requiring tissue from summiting flies. We addressed this with a machine learning classifier to identify summiting animals in real time. PI-CA neurons and CA appear to be intact in summiting animals, despite E. muscae cells invading the host brain, particularly in the superior medial protocerebrum (SMP), the neuropil that contains DN1p axons and PI-CA dendrites. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating the neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.

Data availability

Data supporting these results and the analysis code are available at http://lab.debivort.org/zombie-summiting/ and https://doi.org/10.5281/zenodo.7464925. All raw behavioral tracking (centroid versus time) data are available via Harvard Dataverse at https://doi.org/10.7910/DVN/LTMCFR.

The following data sets were generated

Article and author information

Author details

  1. Carolyn Elya

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    cnelya@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9634-0303
  2. Danylo Lavrentovich

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-9596
  3. Emily Lee

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cassandra Pasadyn

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jasper Duval

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maya Basak

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Valerie Saykina

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin L de Bivort

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    debivort@oeb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6165-7696

Funding

Howard Hughes Medical Institute (GT11087)

  • Carolyn Elya

Harvard Quantitative Biology Initiative

  • Danylo Lavrentovich

Alfred P. Sloan Foundation (Research Fellowship)

  • Benjamin L de Bivort

Esther A. and Joseph Klingenstein Fund (Klingenstein-Simons Fellowship Award)

  • Benjamin L de Bivort

Richard and Susan Smith Family Foundation (Odyssey Award)

  • Benjamin L de Bivort

Harvard/MIT (Basic Neuroscience Grant)

  • Benjamin L de Bivort

National Science Foundation (IOS-1557913)

  • Benjamin L de Bivort

National Institute of Neurological Disorders and Stroke (1R01NS121874-01)

  • Benjamin L de Bivort

NSF-Simons Center for Mathematical and Statistical Analysis of Biology (1764269)

  • Danylo Lavrentovich

Harvard Mind Brain and Behavior Initiative (Postdoctoral Fellow Award)

  • Carolyn Elya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Elya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,581
    views
  • 485
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carolyn Elya
  2. Danylo Lavrentovich
  3. Emily Lee
  4. Cassandra Pasadyn
  5. Jasper Duval
  6. Maya Basak
  7. Valerie Saykina
  8. Benjamin L de Bivort
(2023)
Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila
eLife 12:e85410.
https://doi.org/10.7554/eLife.85410

Share this article

https://doi.org/10.7554/eLife.85410

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Genetics and Genomics
    Thomas J O'Brien, Ida L Barlow ... André EX Brown
    Research Article

    There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype. However, the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here, we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild-type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA-approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggest that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.