Abstract

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

Data availability

All crystal structures have been deposited in the RCSB Protein Data Bank (PDB) with accession IDs of: Sa GpsB NTD (PDB ID 8E2B), Sa GpsB NTD + Sa PBP4 C-term (PDB ID 8E2C).

The following data sets were generated

Article and author information

Author details

  1. Michael D Sacco

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren R Hammond

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radwan E Noor

    Global and Planetary Health, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanwita Bhattacharya

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lily J McKnight

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper J Madsen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1411-9080
  7. Xiujun Zhang

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shane G Butler

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. M Trent Kemp

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Aiden C Jaskolka-Brown

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastian J Khan

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ioannis Gelis

    Department of Chemistry, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Prahathees Eswara

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    For correspondence
    eswara@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4430-261X
  14. Yu Chen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    For correspondence
    ychen1@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-3600

Funding

National Institutes of Health (R21 AI164775)

  • Yu Chen

National Institutes of Health (R35 GM133617)

  • Prahathees Eswara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Sacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,001
    views
  • 154
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Sacco
  2. Lauren R Hammond
  3. Radwan E Noor
  4. Dipanwita Bhattacharya
  5. Lily J McKnight
  6. Jesper J Madsen
  7. Xiujun Zhang
  8. Shane G Butler
  9. M Trent Kemp
  10. Aiden C Jaskolka-Brown
  11. Sebastian J Khan
  12. Ioannis Gelis
  13. Prahathees Eswara
  14. Yu Chen
(2024)
Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB
eLife 13:e85579.
https://doi.org/10.7554/eLife.85579

Share this article

https://doi.org/10.7554/eLife.85579

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Berit Siedentop, Viacheslav N Kachalov ... Sebastian Bonhoeffer
    Research Article

    Background:

    Under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics.

    Methods:

    We searched CENTRAL, EMBASE, and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to 24 November 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. Patients were considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials’ risk of bias was assessed with the Cochrane tool.

    Results:

    42 trials were eligible and 29, including 5054 patients, qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68–2.25), with substantial between-study heterogeneity (I2=77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions.

    Conclusions:

    The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.

    Funding:

    Support from the Swiss National Science Foundation (grant 310030B_176401 (SB, BS, CW), grant 32FP30-174281 (ME), grant 324730_207957 (RDK)) and from the National Institute of Allergy and Infectious Diseases (NIAID, cooperative agreement AI069924 (ME)) is gratefully acknowledged.

    1. Microbiology and Infectious Disease
    Dipasree Hajra, Raju S Rajmani ... Dipshikha Chakravortty
    Research Article

    Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular Salmonella’s metabolic switch and pathogenesis establishment. Our study indicated the ability of the live Salmonella Typhimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism in Salmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation of Salmonella in the macrophages. Further, Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2, making it more conducive for the intracellular life of Salmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skew Salmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knockdown of SIRT1/3 attenuated Salmonella proliferation in macrophages, in in vivo mice model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden, which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time that Salmonella modulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.