Abstract

GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Janani Parameswaran

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9030-4953
  2. Nancy Zhang

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elke Braems

    Department of Neurosciences, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Kedamawit Tilahun

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2107-1580
  5. Devesh C Pant

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4046-4195
  6. Keena Yin

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Seneshaw Asress

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kara Heeren

    Department of Neurosciences, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Anwesha Banerjee

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Emma Davis

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Samantha L Schwartz

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Graeme L Conn

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Gary J Bassell

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Ludo Van Den Bosch

    Department of Neurosciences, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  15. Jie Jiang

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    jie.jiang@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9519-4992

Funding

National Institute of Neurological Disorders and Stroke (R01NS114253)

  • Anwesha Banerjee
  • Gary J Bassell

National Institutes of Health (R01AG068247)

  • Jie Jiang

ALS Association (21-PDF-585)

  • Janani Parameswaran

Fonds Wetenschappelijk Onderzoek (G0C1620N)

  • Ludo Van Den Bosch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Parameswaran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    views
  • 433
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janani Parameswaran
  2. Nancy Zhang
  3. Elke Braems
  4. Kedamawit Tilahun
  5. Devesh C Pant
  6. Keena Yin
  7. Seneshaw Asress
  8. Kara Heeren
  9. Anwesha Banerjee
  10. Emma Davis
  11. Samantha L Schwartz
  12. Graeme L Conn
  13. Gary J Bassell
  14. Ludo Van Den Bosch
  15. Jie Jiang
(2023)
Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS
eLife 12:e85902.
https://doi.org/10.7554/eLife.85902

Share this article

https://doi.org/10.7554/eLife.85902

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.