Diversity and evolution of cerebellar folding in mammals

  1. Katja Heuer  Is a corresponding author
  2. Nicolas Traut
  3. Alexandra Allison de Sousa
  4. Sofie Louise Valk
  5. Julien Clavel
  6. Roberto Toro  Is a corresponding author
  1. Institut Pasteur, Falkland Islands (Malvinas)
  2. Institut Pasteur, France
  3. Bath Spa University, United Kingdom
  4. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  5. Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, France

Abstract

The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.

Data availability

All data analysed during this study is openly available at https://microdraw.pasteur.fr/project/brainmuseum-cb. Code for reproducing our analyses and our figures is openly available at https://github.com/neuroanatomy/comp-cb-folding

The following data sets were generated

Article and author information

Author details

  1. Katja Heuer

    Institut Pasteur, France, Falkland Islands (Malvinas)
    For correspondence
    katjaqheuer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7237-0196
  2. Nicolas Traut

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Allison de Sousa

    Bath Spa University, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sofie Louise Valk

    Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  5. Julien Clavel

    Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto Toro

    Institut Pasteur, Paris, France
    For correspondence
    rto@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6671-858X

Funding

European Commission (101033485)

  • Katja Heuer

Agence Nationale de la Recherche (ANR-19-DATA-0025)

  • Katja Heuer
  • Nicolas Traut
  • Roberto Toro

Agence Nationale de la Recherche (ANR-21-CE45-0016)

  • Katja Heuer
  • Nicolas Traut
  • Roberto Toro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The human dataset used has been made openly available through the BigBrain project.

Copyright

© 2023, Heuer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,282
    views
  • 484
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katja Heuer
  2. Nicolas Traut
  3. Alexandra Allison de Sousa
  4. Sofie Louise Valk
  5. Julien Clavel
  6. Roberto Toro
(2023)
Diversity and evolution of cerebellar folding in mammals
eLife 12:e85907.
https://doi.org/10.7554/eLife.85907

Share this article

https://doi.org/10.7554/eLife.85907

Further reading

    1. Evolutionary Biology
    Mark McMullan, Lawrence Percival-Alwyn ... Neil Hall
    Research Article

    Crop pathogens reduce yield and contribute to global malnourishment. Surveillance not only detects presence/absence but also reveals genetic diversity, which can inform our understanding of rapid adaptation and control measures. An often neglected aspect is that pathogens may also use crop wild relatives as alternative hosts. This study develops the beet (Beta vulgaris) rust (Uromyces beticola) system to explore how crop pathogens evolve to evade resistance using a wild reservoir. We test predictions that crop selection will drive virulence gene differentiation and affect rates of sex between crop- and wild-host rust populations. We sequenced, assembled, and annotated the 588 Mb beet rust genome, developed a novel leaf peel pathogen DNA extraction protocol, and analysed genetic diversity in 42 wild and crop isolates. We found evidence for two populations: one containing exclusively wild-host isolates; the other containing all crop-host isolates, plus five wild isolates. Effectors showed greater diversity in the exclusively wild population and greater differentiation between populations. Preliminary evidence suggests the rates of sexual reproduction may differ between populations. This study highlights how differences in pathogen populations might be used to identify genes important for survival on crops and how reproduction might impact adaptation. These findings are relevant to all crop-reservoir systems and will remain unnoticed without comparison to wild reservoirs.

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.