Abstract

Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs) cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Source Data files for included Western Blot images are provided as Figure 1 - Supplement 1 - Source Data 1, Figure 2 - Supplement 1 - Source Data 1, Figure 3 -Supplement 1 - Source Data 1, and Figure 5 - Supplement 1 - Source Data 1. Source data files have been provided for Figures 1 (Source Data 1 and 2) and 2 (Source Data 3) on Dryad at: https://doi.org/10.5061/dryad.fj6q57402FCS files are deposited on Cytobank at: https://community.cytobank.org/cytobank/projects/1505

The following data sets were generated

Article and author information

Author details

  1. Valerie Ann Perez

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8854-515X
  2. David W Sanders

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-6895
  3. Ayde Mendoza-Oliva

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barbara Elena Stopschinski

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5715-4567
  5. Vishruth Mullapudi

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles L White III

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3870-2804
  7. Lukasz A Joachimiak

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3061-5850
  8. Marc I Diamond

    Center for Alzheimer's and Neurodegenerative Diseases, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    marc.diamond@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8085-7770

Funding

National Institute on Aging (RF1AG078888)

  • Valerie Ann Perez
  • Vishruth Mullapudi
  • Lukasz A Joachimiak

National Institute on Aging (3R01AG048678)

  • Valerie Ann Perez
  • David W Sanders
  • Ayde Mendoza-Oliva
  • Barbara Elena Stopschinski
  • Marc I Diamond

National Institute on Aging (1RF1AG059689)

  • Valerie Ann Perez
  • David W Sanders
  • Ayde Mendoza-Oliva
  • Barbara Elena Stopschinski
  • Charles L White III
  • Marc I Diamond

National Institute on Aging (1RF1AG065407)

  • Valerie Ann Perez
  • David W Sanders
  • Ayde Mendoza-Oliva
  • Barbara Elena Stopschinski
  • Vishruth Mullapudi
  • Lukasz A Joachimiak
  • Marc I Diamond

McCune Foundation

  • Charles L White III

Winspear Family Center for Research on the Neuropathology of Alzheimer's Disease

  • Charles L White III

Chan Zuckerberg Initiative (2018-191983)

  • Charles L White III
  • Lukasz A Joachimiak
  • Marc I Diamond

Chan Zuckerberg Initiative (2021-237348)

  • Charles L White III
  • Lukasz A Joachimiak
  • Marc I Diamond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Perez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,296
    views
  • 191
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie Ann Perez
  2. David W Sanders
  3. Ayde Mendoza-Oliva
  4. Barbara Elena Stopschinski
  5. Vishruth Mullapudi
  6. Charles L White III
  7. Lukasz A Joachimiak
  8. Marc I Diamond
(2023)
DnaJC7 specifically regulates tau seeding
eLife 12:e86936.
https://doi.org/10.7554/eLife.86936

Share this article

https://doi.org/10.7554/eLife.86936

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.