Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex

  1. Atle E Rimehaug  Is a corresponding author
  2. Alexander J Stasik
  3. Espen Hagen
  4. Yazan N Billeh
  5. Josh H Siegle
  6. Kael Dai
  7. Shawn R Olsen
  8. Christof Koch
  9. Gaute T Einevoll
  10. Anton Arkhipov
  1. University of Oslo, Norway
  2. Allen Institute for Brain Science, United States
  3. Allen Institute, United States
  4. Norwegian University of Life Sciences, Norway

Abstract

​​Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: Firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.

Data availability

The files necessary to run simulations of the different model versions presented in the paper as well as data resulting from simulations of those model versions are publicly available in Dryad: https://doi.org/10.5061/dryad.k3j9kd5b8The experimental data set utilized is publicly available at: https://portal.brain-map.org/explore/circuits/visual-coding-neuropixelsThe code generated for data analysis and producing the figures in this manuscript is publicly available at: https://github.com/atleer/CINPLA_Allen_V1_analysis.git.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Atle E Rimehaug

    Department of Informatics, University of Oslo, Oslo, Norway
    For correspondence
    atleeri@ifi.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8312-9875
  2. Alexander J Stasik

    Department of Physics, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1646-2472
  3. Espen Hagen

    Department of Physics, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Yazan N Billeh

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Josh H Siegle

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7736-4844
  6. Kael Dai

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shawn R Olsen

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9568-7057
  8. Christof Koch

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gaute T Einevoll

    Department of Physics, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5425-5012
  10. Anton Arkhipov

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1106-8310

Funding

Simula School of Research

  • Atle E Rimehaug

European Union Horizon 2020 Research and Innovation program (785907)

  • Espen Hagen

European Union Horizon 2020 Research and Innovation program (945539)

  • Espen Hagen

Research Council of Norway (COBRA - project number 250128)

  • Alexander J Stasik

IKTPLUSS-IKT and Digital Innovation (300504)

  • Alexander J Stasik

National Institute of Neurological Disorders and Stroke (R01NS122742)

  • Yazan N Billeh
  • Josh H Siegle
  • Kael Dai
  • Shawn R Olsen
  • Christof Koch
  • Anton Arkhipov

National Institute of Biomedical Imaging and Bioengineering (R01EB029813)

  • Yazan N Billeh
  • Josh H Siegle
  • Kael Dai
  • Shawn R Olsen
  • Christof Koch
  • Anton Arkhipov

Allen Institute

  • Yazan N Billeh
  • Josh H Siegle
  • Kael Dai
  • Shawn R Olsen
  • Christof Koch
  • Anton Arkhipov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rimehaug et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,366
    views
  • 303
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Atle E Rimehaug
  2. Alexander J Stasik
  3. Espen Hagen
  4. Yazan N Billeh
  5. Josh H Siegle
  6. Kael Dai
  7. Shawn R Olsen
  8. Christof Koch
  9. Gaute T Einevoll
  10. Anton Arkhipov
(2023)
Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex
eLife 12:e87169.
https://doi.org/10.7554/eLife.87169

Share this article

https://doi.org/10.7554/eLife.87169

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.