Sex-specific splicing occurs genome-wide during early Drosophila embryogenesis

Abstract

Sex-specific splicing is an essential process that regulates sex determination and drives sexual dimorphism. Yet, how early in development widespread sex-specific transcript diversity occurs was unknown because it had yet to be studied at the genome-wide level. We use the powerful Drosophila model to show that widespread sex-specific transcript diversity occurs early in development, concurrent with zygotic genome activation. We also present a new pipeline called time2splice to quantify changes in alternative splicing over time. Furthermore, we determine that one of the consequences of losing an essential maternally-deposited pioneer factor called CLAMP (Chromatin linked adapter for MSL proteins) is altered sex-specific splicing of genes involved in diverse biological processes that drive development. Overall, we show that sex-specific differences in transcript diversity exist even at the earliest stages of development.

Data availability

Sequencing data have been deposited in GEO under accession codes #GSE220455 and #GSE220439All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2-figure Supplement 3, Figure 5, and Figure 6Source data used to generate all the figures, graphs, and Venn diagrams are provided in Supplementary Data Tables S1-S7

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mukulika Ray

    Molecular Biology, Cellular Biology and Biochemistry Department, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9064-818X
  2. Ashley Mae Conard

    Center for Computational Molecular Biology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Urban

    Biology Department, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6621-8358
  4. Pranav Mahableshwarkar

    Center for Computational Molecular Biology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joseph Aguilera

    Molecular Biology, Cellular Biology and Biochemistry Department, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Annie Huang

    Molecular Biology, Cellular Biology and Biochemistry Department, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Smriti Vaidyanathan

    Center for Computational Molecular Biology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Larschan

    Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    erica_larschan@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2484-4921

Funding

National Institute of General Medical Sciences (R35GM126994)

  • Mukulika Ray
  • Erica Larschan

National Science Foundation (Graduate Research Fellowship)

  • Ashley Mae Conard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,865
    views
  • 234
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mukulika Ray
  2. Ashley Mae Conard
  3. Jennifer Urban
  4. Pranav Mahableshwarkar
  5. Joseph Aguilera
  6. Annie Huang
  7. Smriti Vaidyanathan
  8. Erica Larschan
(2023)
Sex-specific splicing occurs genome-wide during early Drosophila embryogenesis
eLife 12:e87865.
https://doi.org/10.7554/eLife.87865

Share this article

https://doi.org/10.7554/eLife.87865

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.