Neuroscience Tools: Studying behavior under constrained movement

A new platform for studying how brain activity is linked to behavior enables researchers to perform diverse experiments on mice that have their heads immobilized.
  1. Ranier Gutierrez  Is a corresponding author
  1. Laboratory of Neurobiology and Appetite, Department of Pharmacology, CINVESTAV, Mexico

A central question in neuroscience is how patterns of brain activity lead to different behaviors. There is growing recognition that the brain is an active organ that constantly anticipates, predicts, and interacts with its environment (Buzsaki, 2021). It is therefore important to study the brain and behavior of animals in as natural conditions as possible. However, the more ‘free’ an animal is to behave as it would in the wild, the harder it is to observe what the brain is doing.

To study how brain activity is linked to behavior, researchers often immobilize the heads of experimental animals via a technique known as head fixation (Guo et al., 2014; Hughes et al., 2020). The approach has made it possible to observe and measure brain activity in fully conscious animals that can still move other parts of their body, such as their tongue, eyes, and limbs. It also allows scientists to perform experiments that would be impossible to conduct on non-constrained animals, such as using external tools to stimulate the activity of certain nerves or parts of the body (Guo et al., 2014). This has led to the development of sophisticated recording techniques to monitor brain activity during behavioral tasks that isolate specific functions of the brain.

Although this technique was initially used on primates (Evarts, 1968), recent advances in technology have made it possible to record neural activity in the brains of head-fixed mice (Allen et al., 2019; Marshel et al., 2019; Musall et al., 2019; Sofroniew et al., 2016; Steinmetz et al., 2019; Stringer et al., 2019). A recent study of head-fixed mice by a consortium of 11 labs found that almost any behavioral task elicits brain-wide responses that are more related to movement than to sensory information or cognitive variables such as memory or decision making (Benson et al., 2023; Musall et al., 2019). This suggests that even during head fixation, body movement – particularly licking behavior (Gutierrez et al., 2010; Benson et al., 2023) – still has an important impact on brain activity, making it a useful tool for neuroscience studies. Despite the benefits head fixation provides, many of the tasks used to study behavior in freely moving animals are difficult to carry out on head-fixed rodents.

Now, in eLife, Garret Stuber and colleagues from the University of Washington and University of Illinois at Chicago – including Adam Gordon-Fennell as first author – report a new low-cost system for conducting behavioral experiments related to motivation on head-fixed mice (Gordon-Fennell et al., 2023). The tool – which is named OHRBETS (short for Open-Source Head-fixed Rodent Behavioral Experimental Training System) – consists of two configurations (Figure 1). The first is used to study operant conditioning, a process where behaviors change in response to either positive or negative reinforcement (Figure 1A). In this set-up, a spout delivers rewards, such as sucrose, to mice when they turn a wheel to the left or right. The device also allows specific movements made by the mice, such as turning the wheel, to self-activate certain brain cells associated with either positive (delivery of pleasant stimuli) or negative (termination of an undesirable stimulus) reinforcement. Finally, the device can measure real-time place preference behavior, where turning the wheel triggers self-stimulation of different brain cells that results in a rewarding or aversive experience.

A new platform for studying behaviors related to motivation in head-fixed mice.

(A) Operant configuration: mice are trained to rotate a wheel to the left or right to obtain sucrose, to trigger stimulation of certain brain areas, or to express real-time preference and avoidance behavior. (B) Consummatory configuration: multiple spouts (represented as lines) carrying solutions with varying levels of sucrose are consecutively rotated in front of the head-fixed mouse for them to consume. The brain activity, release of neurochemicals, and behavior of the mice is then recorded to see how they respond to these different tasting solutions.

Image credit: Adapted from Figures 2F and 5A in Gordon-Fennell et al., 2023

The second configuration is used to investigate behaviors linked to consuming solutions which produce taste sensations, known as tastants (Figure 1B). It contains multiple spouts which are loaded with varying concentrations of sucrose. This allows researchers to assess how mice respond to different tastes (measured by how often they lick the spout), similar to a behavioral task used to study palatability in freely moving rodents (Smith, 2001).

In a behavioral tour de force, Gordon-Fennell et al. found that head-fixed mice tested with OHRBETS under these different conditions displayed behavior that is comparable to that observed in freely moving mice. By replicating various tasks used in freely moving systems in a head-fixed setup, researchers can take advantage of the precise measurements and reproducibility of the head-fixed set-up while retaining some of the natural behavioral characteristics observed in freely moving experiments.

While OHRBETS increases the number of behavioral tasks that can be evaluated in head-fixed mice, it is important to highlight that constrained settings also have some disadvantages. One important limitation is that it can cause discomfort, potentially putting the animal under stress which can lead to changes in brain activity (Juczewski et al., 2020). Furthermore, most experiments currently carried out in neuroscience laboratories, including those conducted on freely moving rodents, are far from natural. They are usually performed during daylight hours (despite rodents being nocturnal), and in environments lacking sensory stimuli that would be found in the wild, such as food to forage or other animals to interact with. This underscores the challenges ahead and the urgent need to develop new methods to continuously record brain activity and monitor behavior (day and night) with minimal human intervention. Despite these limitations, OHRBETS is a powerful tool for accelerating understanding of how the brain functions under constrained movement and will provide a foundation for understanding how the brain works in more natural settings in the future.

References

Article and author information

Author details

  1. Ranier Gutierrez

    Ranier Gutierrez is in the Laboratory of Neurobiology and Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico

    For correspondence
    ranier@cinvestav.mx
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0289

Publication history

  1. Version of Record published:

Copyright

© 2023, Gutierrez

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,348
    views
  • 81
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ranier Gutierrez
(2023)
Neuroscience Tools: Studying behavior under constrained movement
eLife 12:e91145.
https://doi.org/10.7554/eLife.91145
  1. Further reading

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.