A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein

  1. Markéta Častorálová
  2. Jakub Sýs
  3. Jan Prchal
  4. Anna Pavlů
  5. Lucie Prokopová
  6. Zina Briki
  7. Martin Hubálek
  8. Tomas Ruml  Is a corresponding author
  1. University of Chemistry and Technology, Czech Republic
  2. Czech Academy of Sciences, Czech Republic

Abstract

For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the preassembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.

Data availability

The data were deposited in Dryad under the DOI: https://doi.org/10.5061/dryad.c59zw3rfn

The following data sets were generated

Article and author information

Author details

  1. Markéta Častorálová

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Jakub Sýs

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2589-1631
  3. Jan Prchal

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3398-5059
  4. Anna Pavlů

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucie Prokopová

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Zina Briki

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Hubálek

    Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0247-7956
  8. Tomas Ruml

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic
    For correspondence
    tomas.ruml@vscht.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5698-4366

Funding

Grant agency of the Czech Republic (22-19250S)

  • Jan Prchal

Programme Exceles (LX22NPO5103)

  • Jan Prchal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Častorálová et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 487
    views
  • 108
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markéta Častorálová
  2. Jakub Sýs
  3. Jan Prchal
  4. Anna Pavlů
  5. Lucie Prokopová
  6. Zina Briki
  7. Martin Hubálek
  8. Tomas Ruml
(2024)
A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein
eLife 13:e93489.
https://doi.org/10.7554/eLife.93489

Share this article

https://doi.org/10.7554/eLife.93489

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.