Novel autophagy inducers by accelerating lysosomal clustering against Parkinson's disease

  1. Yuki Date
  2. Yukiko Sasazawa
  3. Mitsuhiro Kitagawa
  4. Kentaro Gejima
  5. Ayami Suzuki
  6. Hideyuki Saya
  7. yasuyuki kida
  8. Masaya Imoto
  9. Eisuke Itakura
  10. Nobutaka Hattori  Is a corresponding author
  11. Shinji Saiki  Is a corresponding author
  1. Chiba University, Japan
  2. Juntendo University, Japan
  3. Keio University, Japan
  4. National Institute of Advanced Industrial Science and Technology, Japan
  5. University of Tsukuba, Japan

Abstract

The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including a-synuclein (aSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1,200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble aSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Yuki Date

    Department of Biology, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0004-1099-1829
  2. Yukiko Sasazawa

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0287-273X
  3. Mitsuhiro Kitagawa

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kentaro Gejima

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ayami Suzuki

    Department of Neurology, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hideyuki Saya

    Division of Gene Regulation, Keio University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. yasuyuki kida

    Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masaya Imoto

    Division for Development of Autophagy Modulating Drugs, Juntendo University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Eisuke Itakura

    Department of Biology, Chiba University, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Nobutaka Hattori

    Department of Neurology, Juntendo University, Tokyo, Japan
    For correspondence
    nhattori@juntendo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2305-301X
  11. Shinji Saiki

    Department of Neurology, University of Tsukuba, Tsukuba, Japan
    For correspondence
    ssaiki@md.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9732-8488

Funding

Japan Society for the Promotion of Science London (18K15464 21K07425)

  • Yukiko Sasazawa

Japan Society for the Promotion of Science London (18KK0242 18KT0027 22H02986)

  • Shinji Saiki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Date et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,612
    views
  • 358
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuki Date
  2. Yukiko Sasazawa
  3. Mitsuhiro Kitagawa
  4. Kentaro Gejima
  5. Ayami Suzuki
  6. Hideyuki Saya
  7. yasuyuki kida
  8. Masaya Imoto
  9. Eisuke Itakura
  10. Nobutaka Hattori
  11. Shinji Saiki
(2024)
Novel autophagy inducers by accelerating lysosomal clustering against Parkinson's disease
eLife 13:e98649.
https://doi.org/10.7554/eLife.98649

Share this article

https://doi.org/10.7554/eLife.98649

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.