A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong  Is a corresponding author
  1. California State University, Northridge, United States
  2. University of Utah, United States
  3. Max Planck Institute for Biology of Ageing, Germany
  4. Max-Planck Institute for Developmental Biology, Germany

Abstract

Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulate insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction toward the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggests that the beetle host pheromone may be a species-specific volatile synomone that coevolved with necromeny.

Article and author information

Author details

  1. Jessica K Cinkornpumin

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dona R Wisidagama

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Rapoport

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James L Go

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Dieterich

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyue Wang

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf J Sommer

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ray L Hong

    California State University, Northridge, Northridge, United States
    For correspondence
    ray.hong@csun.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Cinkornpumin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,139
    views
  • 191
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong
(2014)
A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus
eLife 3:e03229.
https://doi.org/10.7554/eLife.03229

Share this article

https://doi.org/10.7554/eLife.03229

Further reading

  1. A beetle pheromone that lures nematode worms to an insect host can also stop their development or even kill them outright.

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.