Deconvoluting heme biosynthesis to target blood-stage malaria parasites

  1. Paul A Sigala
  2. Jan R Crowley
  3. Jeffrey P Henderson
  4. Daniel E Goldberg  Is a corresponding author
  1. Washington University School of Medicine, United States

Abstract

Heme metabolism is central to blood-stage infection by the malaria parasite, Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate, protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations.

Article and author information

Author details

  1. Paul A Sigala

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    Paul A Sigala, Is a co-inventor on a provisional patent application entitled Combination Artemisinin and Chemiluminescent Photodynamic Therapy and Uses Therefor"".
  2. Jan R Crowley

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Jeffrey P Henderson

    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Daniel E Goldberg

    Department of Molecular Microbiology, Washington University School of Medicine, St Louis, United States
    For correspondence
    goldberg@wusm.wustl.edu
    Competing interests
    Daniel E Goldberg, Is a co-inventor on a provisional patent application entitled Combination Artemisinin and Chemiluminescent Photodynamic Therapy and Uses Therefor"".

Copyright

© 2015, Sigala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,414
    views
  • 875
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul A Sigala
  2. Jan R Crowley
  3. Jeffrey P Henderson
  4. Daniel E Goldberg
(2015)
Deconvoluting heme biosynthesis to target blood-stage malaria parasites
eLife 4:e09143.
https://doi.org/10.7554/eLife.09143

Share this article

https://doi.org/10.7554/eLife.09143

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.