Capsular Polysaccharide Restrains Type VI Secretion in Acinetobacter baumannii

  1. Nicolas Flaugnatti
  2. Loriane Bader
  3. Mary Croisier-Coeytaux
  4. Melanie Blokesch  Is a corresponding author
  1. Ecole Polytechnique Federale de Lausanne, Switzerland
  2. Swiss Federal Institute of Technology Lausanne, Switzerland

Abstract

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.

Data availability

Imaging dataset: All scripts, models, and classifiers used for image analyses have been deposited on Zenodo (https://doi.org/10.5281/zenodo.11039744).All raw images used in this study have been deposited on Zenodo (https://doi.org/10.5281/zenodo.14386836).All other data are included in the manuscript, with source data provided in Supplementary File 3.

Article and author information

Author details

  1. Nicolas Flaugnatti

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6073-3340
  2. Loriane Bader

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary Croisier-Coeytaux

    Bioelectron Microscopy Core Facility, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie Blokesch

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    For correspondence
    melanie.blokesch@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7024-1489

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (407240_167061)

  • Melanie Blokesch

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_204335)

  • Melanie Blokesch

Howard Hughes Medical Institute (55008726)

  • Melanie Blokesch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2025, Flaugnatti et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 426
    views
  • 104
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Flaugnatti
  2. Loriane Bader
  3. Mary Croisier-Coeytaux
  4. Melanie Blokesch
(2025)
Capsular Polysaccharide Restrains Type VI Secretion in Acinetobacter baumannii
eLife 14:e101032.
https://doi.org/10.7554/eLife.101032

Share this article

https://doi.org/10.7554/eLife.101032

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.

    1. Microbiology and Infectious Disease
    Yuqian Wang, Guibin Wang ... Xiangmin Lin
    Research Article

    Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ’s positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.