Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity

  1. Bernadette Carroll
  2. Dorothea Maetzel
  3. Oliver DK Maddocks
  4. Gisela Otten
  5. Matthew Ratcliff
  6. Graham R Smith
  7. Elaine A Dunlop
  8. João F Passos
  9. Owen R Davies
  10. Rudolf Jaenisch
  11. Andrew R Tee
  12. Sovan Sarkar
  13. Viktor I Korolchuk  Is a corresponding author
  1. Newcastle University, United Kingdom
  2. Massachusetts Institute of Technology, United States
  3. The Beatson Institute for Cancer Research, United Kingdom
  4. Cardiff University, United Kingdom
  5. University of Birmingham, United Kingdom

Abstract

The mammalian target of rapamycin complex 1 (mTORC1) is the key signalling hub that regulates cellular protein homeostasis, growth and proliferation. Herein, we demonstrate that amino acid arginine acts independent of its metabolism to allow maximal activation of mTORC1 by growth factors, via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signalling.

Article and author information

Author details

  1. Bernadette Carroll

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Dorothea Maetzel

    Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Oliver DK Maddocks

    The Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Gisela Otten

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Ratcliff

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Graham R Smith

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Elaine A Dunlop

    Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. João F Passos

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Owen R Davies

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Rudolf Jaenisch

    Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew R Tee

    Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Sovan Sarkar

    Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Viktor I Korolchuk

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    For correspondence
    viktor.korolchuk@ncl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Carroll et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,855
    views
  • 1,760
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bernadette Carroll
  2. Dorothea Maetzel
  3. Oliver DK Maddocks
  4. Gisela Otten
  5. Matthew Ratcliff
  6. Graham R Smith
  7. Elaine A Dunlop
  8. João F Passos
  9. Owen R Davies
  10. Rudolf Jaenisch
  11. Andrew R Tee
  12. Sovan Sarkar
  13. Viktor I Korolchuk
(2016)
Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity
eLife 5:e11058.
https://doi.org/10.7554/eLife.11058

Share this article

https://doi.org/10.7554/eLife.11058

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.