Abstract

Mitochondrial Ca2+ uptake, a process crucial for bioenergetics and Ca2+ signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca2+-activated Ca2+ channel, with the Ca2+ pore formed by the MCU protein and Ca2+-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca2+ permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca2+ landscape.

Article and author information

Author details

  1. Ming-Feng Tsai

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charles B Phillips

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Ranaghan

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen-Wei Tsai

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yujiao Wu

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carole Willliams

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher Miller

    Department of Biochemistry, Brandeis University, Waltham, United States
    For correspondence
    cmiller@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,764
    views
  • 1,194
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ming-Feng Tsai
  2. Charles B Phillips
  3. Matthew Ranaghan
  4. Chen-Wei Tsai
  5. Yujiao Wu
  6. Carole Willliams
  7. Christopher Miller
(2016)
Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex
eLife 5:e15545.
https://doi.org/10.7554/eLife.15545

Share this article

https://doi.org/10.7554/eLife.15545

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.