TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions

  1. Nitin H Shirole
  2. Debjani Pal
  3. Edward R Kastenhuber
  4. Serif Senturk
  5. Joseph Boroda
  6. Paola Pisterzi
  7. Madison Miller
  8. Gustavo Munoz
  9. Marko Anderluh
  10. Marc Ladanyi
  11. Scott W Lowe
  12. Raffaella Sordella  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Memorial Sloan Kettering Cancer Center, United States
  3. University of Ljubljana, Slovenia

Abstract

TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Nitin H Shirole

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debjani Pal

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward R Kastenhuber

    Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Serif Senturk

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joseph Boroda

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paola Pisterzi

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Madison Miller

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Munoz

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marko Anderluh

    Department of Medicinal Chemistry, University of Ljubljana, Ljubljana, Slovenia
    Competing interests
    The authors declare that no competing interests exist.
  10. Marc Ladanyi

    Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Scott W Lowe

    Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Raffaella Sordella

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    sordella@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9745-1227

Funding

National Cancer Institute (NCI P01 CA129243-06)

  • Raffaella Sordella
  • Marc Ladanyi
  • Scott W Lowe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with National Research Council's Guide for the Care and Use of Laboratory Animals. Protocols were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee (933922-1 Development of mouse models to study human lung cancer - integrated protocols).

Copyright

© 2016, Shirole et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,155
    views
  • 892
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nitin H Shirole
  2. Debjani Pal
  3. Edward R Kastenhuber
  4. Serif Senturk
  5. Joseph Boroda
  6. Paola Pisterzi
  7. Madison Miller
  8. Gustavo Munoz
  9. Marko Anderluh
  10. Marc Ladanyi
  11. Scott W Lowe
  12. Raffaella Sordella
(2016)
TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions
eLife 5:e17929.
https://doi.org/10.7554/eLife.17929

Share this article

https://doi.org/10.7554/eLife.17929

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Arman Angaji, Michel Owusu ... Johannes Berg
    Research Article

    In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.