A locally-blazed ant trail achieves efficient collective navigation despite limited information

  1. Ehud Fonio
  2. Yael Heyman
  3. Lucas Boczkowski
  4. Aviram Gelblum
  5. Adrian Kosowski
  6. Amos Korman  Is a corresponding author
  7. Ofer Feinerman  Is a corresponding author
  1. Department of Physics of complex systems, Israel
  2. Weizmann Institute of Science, Israel
  3. Institut de Recherche en Informatique Fondamentale, CNRS and University Paris Diderot, France
  4. Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, France

Abstract

Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often fails to supply the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information.

Article and author information

Author details

  1. Ehud Fonio

    The Weizmann Institute of Science, Department of Physics of complex systems, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yael Heyman

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Boczkowski

    Institut de Recherche en Informatique Fondamentale, CNRS and University Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Aviram Gelblum

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian Kosowski

    Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amos Korman

    Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, Paris, France
    For correspondence
    pandit@liafa.univ-paris-diderot.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Ofer Feinerman

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ofer.feinerman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4145-0238

Funding

European Research Council (DBA-648032)

  • Amos Korman
  • Ofer Feinerman

Israel Science Foundation (833/15)

  • Ofer Feinerman

Narodowe Centrum Nauki (2015/17/B/ST6/01897)

  • Adrian Kosowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Fonio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,326
    views
  • 430
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ehud Fonio
  2. Yael Heyman
  3. Lucas Boczkowski
  4. Aviram Gelblum
  5. Adrian Kosowski
  6. Amos Korman
  7. Ofer Feinerman
(2016)
A locally-blazed ant trail achieves efficient collective navigation despite limited information
eLife 5:e20185.
https://doi.org/10.7554/eLife.20185

Share this article

https://doi.org/10.7554/eLife.20185

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.