Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly

  1. Joshua Bloomekatz
  2. Reena Singh
  3. Owen WJ Prall
  4. Ariel C Dunn
  5. Megan Vaughan
  6. Chin-San Loo
  7. Richard P Harvey  Is a corresponding author
  8. Deborah Yelon  Is a corresponding author
  1. University of California, San Diego, United States
  2. Victor Chang Cardiac Research Institute, Australia

Abstract

Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis.

Article and author information

Author details

  1. Joshua Bloomekatz

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Reena Singh

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    No competing interests declared.
  3. Owen WJ Prall

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    No competing interests declared.
  4. Ariel C Dunn

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Megan Vaughan

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Chin-San Loo

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Richard P Harvey

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    r.harvey@victorchang.edu.au
    Competing interests
    Richard P Harvey, Reviewing editor, eLife.
  8. Deborah Yelon

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    dyelon@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3523-4053

Funding

National Heart, Lung, and Blood Institute (R01HL081911 and R01HL133166)

  • Deborah Yelon

March of Dimes Foundation (1-FY11-493)

  • Deborah Yelon

National Health and Medical Research Council (NHMRC 1074386; 573732; 5737707; 573705)

  • Owen WJ Prall
  • Richard P Harvey

Australian Research Council (Stem Cells Australia SR110001002)

  • Richard P Harvey

American Heart Association (12POST11660038)

  • Joshua Bloomekatz

Australian Heart Foundation (CR 08S 3958)

  • Owen WJ Prall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish work followed protocols approved by the UCSD IACUC (protocol S09125). All mouse experiments were overseen by the Garvan Institute of Medical Research/St. Vincent's Hospital Animal Ethics Committee (projects AEC13/01 and AEC13/02).

Copyright

© 2017, Bloomekatz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,881
    views
  • 615
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua Bloomekatz
  2. Reena Singh
  3. Owen WJ Prall
  4. Ariel C Dunn
  5. Megan Vaughan
  6. Chin-San Loo
  7. Richard P Harvey
  8. Deborah Yelon
(2017)
Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly
eLife 6:e21172.
https://doi.org/10.7554/eLife.21172

Share this article

https://doi.org/10.7554/eLife.21172

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.