Carbon recovery dynamics following disturbance by selective logging in Amazonian forests

  1. Camille Piponiot  Is a corresponding author
  2. Plinio Sist
  3. Lucas Mazzei
  4. Marielos Peña-Claros
  5. Francis E Putz
  6. Ervan Rutishauser
  7. Alexander Shenkin
  8. Nataly Ascarrunz
  9. Celso P de Azevedo
  10. Christopher Baraloto
  11. Mabiane França
  12. Marcelino Guedes
  13. Eurídice N Honorio Coronado
  14. Marcus VN d'Oliveira
  15. Ademir R Ruschel
  16. Kátia E da Silva
  17. Eleneide Doff Sotta
  18. Cintia R de Souza
  19. Edson Vidal
  20. Thales AP West
  21. Bruno Hérault  Is a corresponding author
  1. Université de la Guyane, UMR EcoFoG, France
  2. Cirad, UR Forests and Societies, France
  3. Embrapa Amazônia Oriental, Brazil
  4. Wageningen University, Netherlands
  5. University of Florida, United States
  6. CarbonForExpert, Switzerland
  7. University of Oxford, United Kingdom
  8. Instituto Boliviano de Investigación Forestal, Bolivia
  9. Embrapa Amazônia Ocidental, Brazil
  10. Florida International University, United States
  11. Embrapa Amapa, Brazil
  12. Instituto de Investigaciones de la Amazonia Peruana, Peru
  13. Embrapa Acre, Brazil
  14. University of São Paulo, Brazil
  15. Cirad, UMR EcoFoG, France

Abstract

When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21{plus minus}3 MgC ha-1) than in the south (12{plus minus}3 MgC ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Camille Piponiot

    Université de la Guyane, UMR EcoFoG, Kourou, France
    For correspondence
    camille.piponiot@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3473-1982
  2. Plinio Sist

    Cirad, UR Forests and Societies, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Mazzei

    Oriental, Embrapa Amazônia Oriental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Marielos Peña-Claros

    Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Francis E Putz

    Department of Biology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ervan Rutishauser

    CarbonForExpert, Hermance, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander Shenkin

    Environmental Change Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nataly Ascarrunz

    Instituto Boliviano de Investigación Forestal, Santa Cruz, Bolivia
    Competing interests
    The authors declare that no competing interests exist.
  9. Celso P de Azevedo

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher Baraloto

    International Center for Tropical Botany, Florida International University, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mabiane França

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  12. Marcelino Guedes

    Embrapa Amapa, Macapa, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. Eurídice N Honorio Coronado

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2314-590X
  14. Marcus VN d'Oliveira

    Embrapa Acre, Rio Branco, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  15. Ademir R Ruschel

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  16. Kátia E da Silva

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  17. Eleneide Doff Sotta

    Embrapa Amapa, Macapa, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  18. Cintia R de Souza

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  19. Edson Vidal

    Departamento de Ciências Florestais, University of São Paulo, Piracicaba, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  20. Thales AP West

    Department of Biology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Bruno Hérault

    Cirad, UMR EcoFoG, Kourou, France
    For correspondence
    Bruno.Herault@ecofog.gf
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABEX-0025)

  • Camille Piponiot

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2013/16262-4 and 2013/50718-5)

  • Edson Vidal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Piponiot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,096
    views
  • 592
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camille Piponiot
  2. Plinio Sist
  3. Lucas Mazzei
  4. Marielos Peña-Claros
  5. Francis E Putz
  6. Ervan Rutishauser
  7. Alexander Shenkin
  8. Nataly Ascarrunz
  9. Celso P de Azevedo
  10. Christopher Baraloto
  11. Mabiane França
  12. Marcelino Guedes
  13. Eurídice N Honorio Coronado
  14. Marcus VN d'Oliveira
  15. Ademir R Ruschel
  16. Kátia E da Silva
  17. Eleneide Doff Sotta
  18. Cintia R de Souza
  19. Edson Vidal
  20. Thales AP West
  21. Bruno Hérault
(2016)
Carbon recovery dynamics following disturbance by selective logging in Amazonian forests
eLife 5:e21394.
https://doi.org/10.7554/eLife.21394

Share this article

https://doi.org/10.7554/eLife.21394

Further reading

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.