Functionally diverse human T cells recognize non-microbial antigens presented by MR1

Abstract

MHC class I-related molecule MR1 presents riboflavin- and folate-related metabolites to mucosal-associated invariant T cells, but it is unknown whether MR1 can present alternative antigens to other T cell lineages. In healthy individuals we identified MR1-restricted T cells (named MR1T cells) displaying diverse TCRs and reacting to MR1-expressing cells in the absence of microbial ligands. Analysis of MR1T cell clones revealed specificity for distinct cell-derived antigens and alternative transcriptional strategies for metabolic programming, cell cycle control and functional polarization following antigen stimulation. Phenotypical and functional characterization of MR1T cell clones showed multiple chemokine receptor expression profiles and secretion of diverse effector molecules, suggesting functional heterogeneity. Accordingly, MR1T cells exhibited distinct T helper-like capacities upon MR1-dependent recognition of target cells expressing physiological levels of surface MR1. These data extend the role of MR1 beyond microbial antigen presentation and indicate MR1T cells are a normal part of the human T cell repertoire.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Marco Lepore

    Department of Biomedicine,, University of Basel, 4031 Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1353-8224
  2. Artem Kalinichenko

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Salvatore Calogero

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Pavanish Kumar

    Singapore Immunology Network, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Bhairav Paleja

    Singapore Immunology Network, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Mathias Schmaler

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Vipin Narang

    Singapore Immunology Network, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Francesca Zolezzi

    Singapore Immunology Network, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Poidinger

    Singapore Immunology Network, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Lucia Mori

    Departement Biomedicine, University Hospital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5522-4648
  11. Gennaro De Libero

    Department of Biomedicine, University of Basel, Basel, Switzerland
    For correspondence
    gennaro.delibero@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0853-7868

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030-149571)

  • Gennaro De Libero

European Commission (643381)

  • Gennaro De Libero

Science and Engineering Research Council (1121480006)

  • Gennaro De Libero

Universität Basel (Core Funding)

  • Gennaro De Libero

Agency for Science, Technology and Research (1201826277)

  • Gennaro De Libero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Venous blood was taken from healthy donors after informed consent obtained at the time of blood collection under approval of the "Ethikkommision Nordwest und Zentralschweiz/EKNZ (139/13).

Copyright

© 2017, Lepore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,402
    views
  • 1,648
    downloads
  • 125
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Lepore
  2. Artem Kalinichenko
  3. Salvatore Calogero
  4. Pavanish Kumar
  5. Bhairav Paleja
  6. Mathias Schmaler
  7. Vipin Narang
  8. Francesca Zolezzi
  9. Michael Poidinger
  10. Lucia Mori
  11. Gennaro De Libero
(2017)
Functionally diverse human T cells recognize non-microbial antigens presented by MR1
eLife 6:e24476.
https://doi.org/10.7554/eLife.24476

Share this article

https://doi.org/10.7554/eLife.24476

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.