Abstract

The human gut microbiota impacts host metabolism and has been implicated in the pathophysiology of obesity and metabolic syndromes. However, defining the roles of specific microbial activities and metabolites on host phenotypes has proven challenging due to the complexity of the microbiome-host ecosystem. Here, we identify strains from the abundant gut bacterial phylum Bacteroidetes that display selective bile salt hydrolase (BSH) activity. Using isogenic strains of wild-type and BSH-deleted Bacteroides thetaiotaomicron, we selectively modulated the levels of the bile acid tauro-b-muricholic acid in monocolonized gnotobiotic mice. B. thetaiotaomicron BSH mutant-colonized mice displayed altered metabolism, including reduced weight gain and respiratory exchange ratios, as well as transcriptional changes in metabolic, circadian rhythm, and immune pathways in the gut and liver. Our results demonstrate that metabolites generated by a single microbial gene and enzymatic activity can profoundly alter host metabolism and gene expression at local and organism-level scales.

Data availability

RNA-Seq data are deposited in the Gene Expression Omnibus (GEO) database (accession GSE112571, Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112571).All other data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Lina Yao

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Sarah Craven Seaton

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Sarah Craven Seaton, is currently affiliated with Indigo Agriculture, but the research was conducted when she was a Research Associate at Harvard Medical School. The author has no other competing interests to declare.
  3. Sula Ndousse-Fetter

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Arijit A Adhikari

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Nicholas DiBenedetto

    Massachusetts Host Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Amir I Mina

    Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  7. Alexander S Banks

    Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Lynn Bry

    Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  9. A Sloan Devlin

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    sloan_devlin@hms.harvard.edu
    Competing interests
    A Sloan Devlin, is a consultant for Kintai Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5598-3751

Funding

The Center for Microbiome Informatics and Therapeutics at MIT (Innovation Award)

  • Arijit A Adhikari
  • A Sloan Devlin

The Harvard Digestive Diseases Center (NIH grant P30DK034854)

  • Lina Yao
  • Sarah Craven Seaton
  • Sula Ndousse-Fetter
  • Arijit A Adhikari
  • Nicholas DiBenedetto
  • Lynn Bry
  • A Sloan Devlin

Karin Grunebaum Cancer Research Foundation (Junior Faculty Award)

  • A Sloan Devlin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments involving mice were performed using IACUC approved protocols (Protocol # 2017N000053) at the Brigham and Women's Hospital Center for Comparative Medicine.

Copyright

© 2018, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lina Yao
  2. Sarah Craven Seaton
  3. Sula Ndousse-Fetter
  4. Arijit A Adhikari
  5. Nicholas DiBenedetto
  6. Amir I Mina
  7. Alexander S Banks
  8. Lynn Bry
  9. A Sloan Devlin
(2018)
A selective gut bacterial bile salt hydrolase alters host metabolism
eLife 7:e37182.
https://doi.org/10.7554/eLife.37182

Share this article

https://doi.org/10.7554/eLife.37182

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.