Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
Abstract
Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca2+-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question. Ca2+-bound and Ca2+-free conformations of nhTMEM16 in detergent and lipid nanodiscs illustrate the interactions with its environment and they reveal the conformational changes underlying its activation. In this process, Ca2+-binding induces a stepwise transition of the catalytic subunit cavity, converting a closed cavity that is shielded from the membrane in the absence of ligand, into a polar furrow that becomes accessible to lipid headgroups in the Ca2+-bound state. Additionally, our structures demonstrate how nhTMEM16 distorts the membrane at both entrances of the subunit cavity, thereby decreasing the energy barrier for lipid movement.
Data availability
The three-dimensional cryo-EM density maps as well as the modelled coordinated have been deposited in the Electron Microscopy Data Bank and the Protein Data Bank, respectively. The deposition includes the cryo-EM maps, both half-maps, the mask used for final FSC calculation and the refined unmasked maps. The raw data (several TBs in size) can be provided upon request.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in DDMProtein Data Bank, 6QM5.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in DDMProtein Data Bank, 6QM6.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in DDMElectron Microscopy Data Bank, EMD-4588.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in DDMElectron Microscopy Data Bank, EMD-4589.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (open state)Electron Microscopy Data Bank, EMD-4592.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (intermediate state)Electron Microscopy Data Bank, EMD-4593.
-
Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (closed state)Electron Microscopy Data Bank, EMD-4594.
-
Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in nanodiscElectron Microscopy Data Bank, EMD-4587.
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (740.018.016)
- Cristina Paulino
H2020 European Research Council (339116)
- Raimund Dutzler
H2020 European Research Council (AnoBest)
- Raimund Dutzler
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Kalienkova et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,368
- views
-
- 896
- downloads
-
- 103
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.