Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation during early hypoxia

Abstract

Hypoxia, a major inducer of angiogenesis, triggers major changes of gene expression at the transcriptional level. Furthermore, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) able to bind RNA and to activate the FGF1 IRES in hypoxia while it tends to inhibit several IRESs in normoxia. VASH1 depletion has also a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process to trigger new vessel formation in ischemic heart.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Lentivector plasmid complete maps and sequences are available on Dryad.

The following data sets were generated

Article and author information

Author details

  1. Fransky Hantelys

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne-Claire Godet

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian David

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Florence Tatin

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Edith Renaud-Gabardos

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Françoise Pujol

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Leila H Diallo

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabelle Ader

    Stromalab, Inserm U1031, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Laetitia Ligat

    CRCT, Inserm UMR 1037, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony K Henras

    Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Yasufumi Sato

    Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku Universtiy, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Angelo Parini

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Eric Lacazette

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Barbara Garmy-Susini

    I2MC, Inserm UMR 1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Anne-Catherine Prats

    I2MC, Inserm UMR 1048, Toulouse, France
    For correspondence
    anne-catherine.prats@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5282-3776

Funding

Region Midi-Pyrenees

  • Anne-Catherine Prats

AFM-Téléthon

  • Edith Renaud-Gabardos
  • Anne-Catherine Prats

Association pour la Recherche sur le Cancer

  • Anne-Catherine Prats

European Commission (REFBIO VEMT)

  • Anne-Catherine Prats

Fondation Toulouse Cancer-Sante

  • Barbara Garmy-Susini

Agence Nationale de la Recherche (ANR-18-CE11-0020-RIBOCARD)

  • Anne-Catherine Prats

Ligue Contre le Cancer

  • Fransky Hantelys
  • Anne-Claire Godet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Hantelys et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,695
    views
  • 262
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fransky Hantelys
  2. Anne-Claire Godet
  3. Florian David
  4. Florence Tatin
  5. Edith Renaud-Gabardos
  6. Françoise Pujol
  7. Leila H Diallo
  8. Isabelle Ader
  9. Laetitia Ligat
  10. Anthony K Henras
  11. Yasufumi Sato
  12. Angelo Parini
  13. Eric Lacazette
  14. Barbara Garmy-Susini
  15. Anne-Catherine Prats
(2019)
Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation during early hypoxia
eLife 8:e50094.
https://doi.org/10.7554/eLife.50094

Share this article

https://doi.org/10.7554/eLife.50094

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.