The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy

  1. Akanksha Thawani
  2. Michael J Rale
  3. Nicolas Coudray
  4. Gira Bhabha
  5. Howard A Stone
  6. Joshua W Shaevitz
  7. Sabine Petry  Is a corresponding author
  1. Princeton University, United States
  2. New York University School of Medicine, United States
  3. Skirball Institute of Biomolecular Medicine, United States

Abstract

Determining how microtubules (MTs) are nucleated is essential for understanding how the cytoskeleton assembles. While the MT nucleator, γ-tubulin ring complex (γ-TuRC) has been identified, precisely how γ-TuRC nucleates a MT remains poorly understood. Here we developed a single molecule assay to directly visualize nucleation of a MT from purified Xenopus laevis γ-TuRC. We reveal a high γ-/αβ-tubulin affinity, which facilitates assembly of a MT from γ-TuRC. Whereas spontaneous nucleation requires assembly of 8 αβ-tubulins, nucleation from γ-TuRC occurs efficiently with a cooperativity of 4 αβ-tubulin dimers. This is distinct from pre-assembled MT seeds, where a single dimer is sufficient to initiate growth. A computational model predicts our kinetic measurements and reveals the rate-limiting transition where laterally-associated αβ-tubulins drive γ-TuRC into a closed conformation. Putative activation domain of CDK5RAP2, NME7 and TPX2 do not enhance γ-TuRC-mediated nucleation, while XMAP215 drastically increases the nucleation efficiency by strengthening the longitudinal γ-/αβ-tubulin interaction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 6, 7 and related supplements.

Article and author information

Author details

  1. Akanksha Thawani

    Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4168-128X
  2. Michael J Rale

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicolas Coudray

    Department of Cell Biology and Applied Bioinformatics Laboratory, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gira Bhabha

    New York University School of Medicine, Skirball Institute of Biomolecular Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Howard A Stone

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9670-0639
  6. Joshua W Shaevitz

    Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8809-4723
  7. Sabine Petry

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    spetry@Princeton.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8537-9763

Funding

American Heart Association (17PRE33660328)

  • Akanksha Thawani

Princeton University (Charlotte Elizabeth Procter Honorific Fellowship)

  • Akanksha Thawani

Howard Hughes Medical Institute (Gilliam fellowship)

  • Michael J Rale

National Science Foundation (Graduate Student Fellowship)

  • Michael J Rale

National Institute of General Medical Sciences (R00GM112982)

  • Gira Bhabha

National Institute of General Medical Sciences (1DP2GM123493)

  • Sabine Petry

Pew Charitable Trusts (00027340)

  • Sabine Petry

David and Lucile Packard Foundation (2014-40376)

  • Sabine Petry

National Science Foundation (PHY-1734030)

  • Joshua W Shaevitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) protocol # 1941-16 of Princeton University.

Copyright

© 2020, Thawani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,734
    views
  • 521
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akanksha Thawani
  2. Michael J Rale
  3. Nicolas Coudray
  4. Gira Bhabha
  5. Howard A Stone
  6. Joshua W Shaevitz
  7. Sabine Petry
(2020)
The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy
eLife 9:e54253.
https://doi.org/10.7554/eLife.54253

Share this article

https://doi.org/10.7554/eLife.54253

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.