Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour

  1. Anton Fomenko  Is a corresponding author
  2. Kai-Hsiang Stanley Chen
  3. Jean-François Nankoo
  4. James Saravanamuttu
  5. Yanqiu Wang
  6. Mazen El-Baba
  7. Xue Xia
  8. Shakthi Sanjana Seerala
  9. Kullervo Hynynen
  10. Andres M Lozano  Is a corresponding author
  11. Robert Chen  Is a corresponding author
  1. University of Toronto, Canada
  2. National Taiwan University, Taiwan
  3. Toronto Western Hospital, Canada
  4. Sunnybrook Research Institute, Canada

Abstract

Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behaviour. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty cycle and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse measures of cortical inhibition and facilitation, and performance on a visuomotor task was also assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABAA-mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but not when controlled with TUS at near-somatosensory threshold intensity.

Data availability

Data used for this study are included in the manuscript and supporting files.Files for 3D printing the stimulating devices and custom MATLAB scripts used for stimulation have been deposited into a cited GitHub repository.

Article and author information

Author details

  1. Anton Fomenko

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    anton.fomenko@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-6784
  2. Kai-Hsiang Stanley Chen

    Neurology, National Taiwan University, Taiwan, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-François Nankoo

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. James Saravanamuttu

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanqiu Wang

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Mazen El-Baba

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Xue Xia

    Toronto Western Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shakthi Sanjana Seerala

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Kullervo Hynynen

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Andres M Lozano

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    lozano@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Chen

    Toronto Western Hospital, Toronto, Canada
    For correspondence
    robert.chen@uhn.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (Banting and Best Doctoral Award)

  • Anton Fomenko

Canadian Institutes of Health Research (Foundation Grant,FDN 154292)

  • Robert Chen

University of Manitoba (Clinician Investigator Program)

  • Anton Fomenko

Canada Research Chairs (Neuroscience)

  • Andres M Lozano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave written informed consent and the protocol was approved by the UHN Research Ethics Board (Protocol #18-5082) in accordance with the Declaration of Helsinki on the use of human subjects in experiments.

Copyright

© 2020, Fomenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,385
    views
  • 730
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton Fomenko
  2. Kai-Hsiang Stanley Chen
  3. Jean-François Nankoo
  4. James Saravanamuttu
  5. Yanqiu Wang
  6. Mazen El-Baba
  7. Xue Xia
  8. Shakthi Sanjana Seerala
  9. Kullervo Hynynen
  10. Andres M Lozano
  11. Robert Chen
(2020)
Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour
eLife 9:e54497.
https://doi.org/10.7554/eLife.54497

Share this article

https://doi.org/10.7554/eLife.54497

Further reading

    1. Neuroscience
    Zachary Fournier, Leandro M Alonso, Eve Marder
    Research Article

    Circuit function results from both intrinsic conductances of network neurons and the synaptic conductances that connect them. In models of neural circuits, different combinations of maximal conductances can give rise to similar activity. We compared the robustness of a neural circuit to changes in their intrinsic versus synaptic conductances. To address this, we performed a sensitivity analysis on a population of conductance-based models of the pyloric network from the crustacean stomatogastric ganglion (STG). The model network consists of three neurons with nine currents: a sodium current (Na), three potassium currents (Kd, KCa, KA), two calcium currents (CaS and CaT), a hyperpolarization-activated current (H), a non-voltage-gated leak current (leak), and a neuromodulatory current (MI). The model cells are connected by seven synapses of two types, glutamatergic and cholinergic. We produced one hundred models of the pyloric network that displayed similar activities with values of maximal conductances distributed over wide ranges. We evaluated the robustness of each model to changes in their maximal conductances. We found that individual models have different sensitivities to changes in their maximal conductances, both in their intrinsic and synaptic conductances. As expected, the models become less robust as the extent of the changes increases. Despite quantitative differences in their robustness, we found that in all cases, the model networks are more sensitive to the perturbation of their intrinsic conductances than their synaptic conductances.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.