BiteOscope, an open platform to study mosquito biting behavior

  1. Felix JH Hol  Is a corresponding author
  2. Louis Lambrechts
  3. Manu Prakash
  1. Stanford University, United States
  2. Institut Pasteur, France

Abstract

Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.

Data availability

Source data files for Figures 2 and 3 are provided as Supplementary Files, code to generate figures is available from Github: https://github.com/felixhol/biteOscope

Article and author information

Author details

  1. Felix JH Hol

    Bioengineering, Stanford University, Stanford, United States
    For correspondence
    felix.hol@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8061-0826
  2. Louis Lambrechts

    Insect-Virus Interactions Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5958-2138
  3. Manu Prakash

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8046-8388

Funding

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Felix JH Hol

H2020 Marie Skłodowska-Curie Actions (PiQMosqBite)

  • Felix JH Hol

Dutch Research Council NWO (Rubicon)

  • Felix JH Hol

Agence Nationale de la Recherche (ANR-16-CE35-0004-01)

  • Louis Lambrechts

Agence Nationale de la Recherche (ANR-18-CE35-0003-01)

  • Louis Lambrechts

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Louis Lambrechts

National Institutes of Health (DP2-AI124336)

  • Manu Prakash

United States Agency for International Development (Grand Challenges: Zika and Future Threats)

  • Felix JH Hol
  • Manu Prakash

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,947
    views
  • 593
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix JH Hol
  2. Louis Lambrechts
  3. Manu Prakash
(2020)
BiteOscope, an open platform to study mosquito biting behavior
eLife 9:e56829.
https://doi.org/10.7554/eLife.56829

Share this article

https://doi.org/10.7554/eLife.56829

Further reading

    1. Ecology
    Luis Abdala-Roberts, Adriana Puentes ... Kailen A Mooney
    Review Article

    Global change is causing unprecedented degradation of the Earth’s biological systems and thus undermining human prosperity. Past practices have focused either on monitoring biodiversity decline or mitigating ecosystem services degradation. Missing, but critically needed, are management approaches that monitor and restore species interaction networks, thus bridging existing practices. Our overall aim here is to lay the foundations of a framework for developing network management, defined here as the study, monitoring, and management of species interaction networks. We review theory and empirical evidence demonstrating the importance of species interaction networks for the provisioning of ecosystem services, how human impacts on those networks lead to network rewiring that underlies ecosystem service degradation, and then turn to case studies showing how network management has effectively mitigated such effects or aided in network restoration. We also examine how emerging technologies for data acquisition and analysis are providing new opportunities for monitoring species interactions and discuss the opportunities and challenges of developing effective network management. In summary, we propose that network management provides key mechanistic knowledge on ecosystem degradation that links species- to ecosystem-level responses to global change, and that emerging technological tools offer the opportunity to accelerate its widespread adoption.

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.