Abstract

Cells harbor two systems for fatty acid synthesis, one in the cytoplasm (catalyzed by fatty acid synthase, FASN) and one in the mitochondria (mtFAS). In contrast to FASN, mtFAS is poorly characterized, especially in higher eukaryotes, with the major product(s), metabolic roles, and cellular function(s) being essentially unknown. Here we show that hypomorphic mtFAS mutant mouse skeletal myoblast cell lines display a severe loss of electron transport chain (ETC) complexes and exhibit compensatory metabolic activities including reductive carboxylation. This effect on ETC complexes appears to be independent of protein lipoylation, the best characterized function of mtFAS, as mutants lacking lipoylation have an intact ETC. Finally, mtFAS impairment blocks the differentiation of skeletal myoblasts in vitro. Together, these data suggest that ETC activity in mammals is profoundly controlled by mtFAS function, thereby connecting anabolic fatty acid synthesis with the oxidation of carbon fuels.

Data availability

The data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository. The code used to process these data is available at Github https://github.com/j-berg/nowinski_2020.Sequencing data have been deposited at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE148617

The following data sets were generated

Article and author information

Author details

  1. Sara M Nowinski

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Ashley Solmonson

    Children's Research Institute, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8863-4558
  3. Scott F Rusin

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. J Alan Maschek

    Nutrition and Integrative Physiology, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Claire L Bensard

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Sarah Fogarty

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Mi-Young Jeong

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  8. Sandra Lettlova

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Jordan A Berg

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  10. Jeffrey T Morgan

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Yeyun Ouyang

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Bradley C Naylor

    Metabolomics, Proteomics, and Mass Spectrometry Core, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  13. Joao A Paulo

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  14. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  15. James E Cox

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  16. Steven P Gygi

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  17. Dennis R Winge

    Department of Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1160-1189
  18. Ralph J DeBerardinis

    Children's Research Institute, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    Ralph J DeBerardinis, Reviewing editor, eLife.
  19. Jared Rutter

    Biochemistry, University of Utah, Salt Lake City, United States
    For correspondence
    rutter@biochem.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2710-9765

Funding

National Institute of General Medical Sciences (GM115174)

  • Jared Rutter

National Cancer Institute (R35CA22044901)

  • Ralph J DeBerardinis

The Once Upon a Time Foundation

  • Ralph J DeBerardinis

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F32HD096786)

  • Ashley Solmonson

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK107397)

  • Katsuhiko Funai

National Institute of Diabetes and Digestive and Kidney Diseases (R21AG063077)

  • Katsuhiko Funai

Office of the Director (S10OD016232)

  • James E Cox

Office of the Director (S10OD021505)

  • James E Cox

National Institute of Diabetes and Digestive and Kidney Diseases (U54DK110858)

  • James E Cox

National Institute of General Medical Sciences (R01GM132129)

  • Joao A Paulo

National Institute of General Medical Sciences (GM97645)

  • Steven P Gygi

National Institute of General Medical Sciences (GM115129)

  • Jared Rutter

National Institute of General Medical Sciences (GM110755)

  • Dennis R Winge

The Nora Eccles Treadwell Foundation

  • Jared Rutter

Howard Hughes Medical Institute (Investigator)

  • Jared Rutter

United Mitochondrial Disease Foundation (PF-15-046)

  • Sara M Nowinski

American Cancer Society (PF-18-106-01)

  • Sara M Nowinski

National Heart, Lung, and Blood Institute (T32HL007576)

  • Sara M Nowinski

National Institute of Diabetes and Digestive and Kidney Diseases (T32DK11096601)

  • Jordan A Berg

Howard Hughes Medical Institute (Investigator)

  • Ralph J DeBerardinis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Nowinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,431
    views
  • 1,580
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara M Nowinski
  2. Ashley Solmonson
  3. Scott F Rusin
  4. J Alan Maschek
  5. Claire L Bensard
  6. Sarah Fogarty
  7. Mi-Young Jeong
  8. Sandra Lettlova
  9. Jordan A Berg
  10. Jeffrey T Morgan
  11. Yeyun Ouyang
  12. Bradley C Naylor
  13. Joao A Paulo
  14. Katsuhiko Funai
  15. James E Cox
  16. Steven P Gygi
  17. Dennis R Winge
  18. Ralph J DeBerardinis
  19. Jared Rutter
(2020)
Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria
eLife 9:e58041.
https://doi.org/10.7554/eLife.58041

Share this article

https://doi.org/10.7554/eLife.58041

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.