A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm
Abstract
Neither the disease mechanism nor treatments for COVID-19 are currently known. Here we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS, that produces the nonapeptide angiotensin1-9 from angiotensin I. Bradykinin is a potent, but often forgotten, part of the vasopressor system that induces hypotension and vasodilation 1, and is regulated by ACE and enhanced by angiotensin1-9 2. Here we perform a completely new analysis on gene expression data from cells of bronchoalveolar lavage samples from COVID-19 patients that were used to sequence the virus, but the host information was discarded 3. Comparison with lavage samples from controls identify a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin (REN) , angiotensin (AGT), key RAS receptors (AGTR2, AGTR1), kinogen (KNG) and the kallikrein enzymes (KLKB1, many of KLK-1-15) that activate it, and both bradykinin receptors (BDKRB1, BDKRB2). This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.
Data availability
FASTQ files are available from the NCBI Sequence Read Archive (PRJNA605983 and PRJNA434133)https://www.ncbi.nlm.nih.gov/sraLeinonen, R., Sugawara, H., Shumway, M. and International Nucleotide Sequence Database Collaboration, 2010. The sequence read archive. Nucleic acids research, 39(suppl_1), pp.D19-D21.
-
Microbiome and Inflammatory Interactions in Obese and Severe Asthmatic AdultsNCBI Sequence Read Archive, PRJNA434133.
Article and author information
Author details
Funding
Oak Ridge National Laboratory (LOIS:10074)
- Mike R Garvin
- J Izaak Miller
- Erica T Prates
- Daniel Jacobson
U.S. Department of Energy (National Virtual Biotechnology Laboratory)
- Mike R Garvin
- Christiane Alvarez
- J Izaak Miller
- Erica T Prates
- Angelica M Walker
- Daniel Jacobson
National Institutes of Health (U24 HL148865)
- Bruce Aronow
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 156,385
- views
-
- 8,371
- downloads
-
- 300
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Microbiology and Infectious Disease
- Epidemiology and Global Health
- Immunology and Inflammation
eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.
-
- Computational and Systems Biology
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.