Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors

  1. Jacob A Tennessen  Is a corresponding author
  2. Stephanie R Bollmann
  3. Ekaterina Peremyslova
  4. Brent A Kronmiller
  5. Clint Sergi
  6. Bulut Hamali
  7. Michael Scott Blouin
  1. Harvard T.H. Chan School of Public Health, United States
  2. Oregon State University, United States

Abstract

Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15-fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.

Data availability

All data not included in the manuscript are available at NCBI. PacBio genome assemblies are available under BioProject Accession PRJNA639204. Pooled whole-genome sequencing reads are available under BioProject Accession PRJNA638474. RNA-Seq reads are available under BioProject Accession PRJNA639026. Assembled transcripts are on Genbank, Accessions MT787302-MT787323.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jacob A Tennessen

    Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
    For correspondence
    jtennessen@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5015-4740
  2. Stephanie R Bollmann

    Integrative Biology, Oregon State University, Corvallis, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ekaterina Peremyslova

    Integrative Biology, Oregon State University, Corvallis, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brent A Kronmiller

    Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Clint Sergi

    Integrative Biology, Oregon State University, Corvallis, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bulut Hamali

    Integrative Biology, Oregon State University, Corvallis, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Scott Blouin

    Integrative Biology, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8439-2878

Funding

National Institutes of Health (AI143991)

  • Professor Michael Scott Blouin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We used mice to maintain the schistosome parasites and to produce miracidia for challenge experiments. Infection is through contact with inoculated water and involves minimal discomfort. Infected rodents are euthanized with CO2 prior to showing clinical signs of disease and are dissected to recover parasitic eggs. Animal numbers were held to the minimum required for the research. Institutional approval: Oregon State University Animal Care and Use Protocols 4749 and 5115.

Copyright

© 2020, Tennessen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,180
    views
  • 249
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob A Tennessen
  2. Stephanie R Bollmann
  3. Ekaterina Peremyslova
  4. Brent A Kronmiller
  5. Clint Sergi
  6. Bulut Hamali
  7. Michael Scott Blouin
(2020)
Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors
eLife 9:e59395.
https://doi.org/10.7554/eLife.59395

Share this article

https://doi.org/10.7554/eLife.59395

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.