Serotonin 2A receptor signaling coordinates central metabolic processes to modulate aging in response to nutrient choice
Abstract
It has been recognized for nearly a century that diet modulates aging. Despite early experiments suggesting that reduced caloric intake augmented lifespan, accumulating evidence indicates that other characteristics of the diet may be equally or more influential in modulating aging. We demonstrate that behavior, metabolism, and lifespan in Drosophila are affected by whether flies are provided a choice of different nutrients or a single, complete medium, largely independent of the amount of nutrients that are consumed. Meal choice elicits a rapid metabolic reprogramming that indicates a potentiation of TCA cycle and amino acid metabolism, which requires serotonin 2A receptor. Knockdown of glutamate dehydrogenase, a key TCA pathway component, abrogates the effect of dietary choice on lifespan. Our results reveal a mechanism of aging that applies in natural conditions, including our own, in which organisms continuously perceive and evaluate nutrient availability to promote fitness and well-being.
Data availability
Source data for all quantifications shown in Data Figures 1-5, figures supplements and the supplementary files are provided with the paper. Metabolomic raw data, analyses and statistics can be obtained from Supplementary Files 3-4 and our GitHub repository (github.com/ylyu-fly/Metabolomics-FlyChoiceDiet).
Article and author information
Author details
Funding
Burroughs Wellcome Fund (Collaborative Research Travel Grant,BWF1017452)
- Yang Lyu
National Science Foundation (Graduate Research Fellowship Program,DGE 1256260)
- Kristina J Weaver
National Institutes of Health (R01 AG049494 and P30 AG013280)
- Daniel EL Promislow
National Institutes of Health (R01 AG051649 and R01 AG030593)
- Scott D Pletcher
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Lyu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,543
- views
-
- 454
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Cell Biology
eLife is pleased to present a Special Issue to highlight recent advances in the mechanistic understanding of aging and interventions that extend longevity.
-
- Cancer Biology
- Genetics and Genomics
Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing pairwise tyrosine kinase knockout CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and imatinib (ABL inhibitor) both in vitro and in vivo. Mechanistically, treatment with TKIs upregulates the transcription of KDM4, which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. FYN expression is associated with therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.