Task specialization across research careers

  1. Nicolas Robinson-Garcia  Is a corresponding author
  2. Rodrigo Costas
  3. Cassidy R Sugimoto
  4. Vincent Larivière
  5. Gabriela F Nane
  1. Delft University of Technology, Netherlands
  2. Leiden University, Netherlands
  3. Indiana University Bloomington, United States
  4. Université de Montréal, Canada

Abstract

Research careers are typically envisioned as a single path in which researchers start being one of a large number of researchers working under the guidance of one or more experienced scientists and, if they are successful, end with the individual leading their own research group and training future generations of scientists. Here we study the author contribution statements of published research papers in order to explore possible biases and disparities in career trajectories in science. We used Bayesian networks to train a prediction model based on a dataset of 70,694 publications from PLoS journals, which included 347,136 distinct authors and their associated contribution statements. This model was used to predict the contributions of 222,925 authors in 6,236,239 publications, and to apply a robust archetypal analysis to profile scientists across four career stages: junior, early-career, mid-career and late-career. All three of the archetypes we found - leader, specialized, and supporting - were encountered for early-career and mid-career researchers. Junior researchers displayed only two archetypes (specialized, and supporting), as did late-career researchers (leader and supporting). Scientists assigned to the leader and specialized archetypes tended to have longer careers than those assigned to the supporting archetype. We also observed consistent gender bias at all stages: the majority of male scientists belonged to the leader archetype, while the larger proportion of women belonged to the specialized archetype, especially for early-career and mid-career researchers.

Data availability

All data is openly accessible at http://doi.org/10.5281/zenodo.3891055

The following data sets were generated

Article and author information

Author details

  1. Nicolas Robinson-Garcia

    Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands
    For correspondence
    elrobinster@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0585-7359
  2. Rodrigo Costas

    Centre for Science and Technology Studies, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7465-6462
  3. Cassidy R Sugimoto

    School of Informatics and Computing, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vincent Larivière

    École de bibliothéconomie et des sciences de l'information, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriela F Nane

    Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (707404)

  • Nicolas Robinson-Garcia

South African DST-NRF Centre for Excellence in Scientometrics and Science, Technology and Innovation Policy

  • Rodrigo Costas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Robinson-Garcia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,335
    views
  • 258
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Robinson-Garcia
  2. Rodrigo Costas
  3. Cassidy R Sugimoto
  4. Vincent Larivière
  5. Gabriela F Nane
(2020)
Task specialization across research careers
eLife 9:e60586.
https://doi.org/10.7554/eLife.60586
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.