Restored TDCA and valine levels imitate the effects of bariatric surgery

  1. Markus Quante
  2. Jasper Iske
  3. Timm Heinbokel
  4. Bhavna N Desai
  5. Hector Rodriguez Cetina Biefer
  6. Yeqi Nian
  7. Felix Krenzien
  8. Tomohisa Matsunaga
  9. Hirofumi Uehara
  10. Ryoichi Maenosono
  11. Haruhito Azuma
  12. Johann Pratschke
  13. Christine S Falk
  14. Tammy Lo
  15. Eric Sheu
  16. Ali Tavakkoli
  17. Reza Abdi
  18. David L Perkins
  19. Maria-Luisa Alegre
  20. Alexander S Banks
  21. Hao Zhou
  22. Abdallah Elkhal
  23. Stefan G Tullius  Is a corresponding author
  1. Brigham and Women's Hospital, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. Charité Universitätsmedizin Berlin, Germany
  4. Osaka Medical College, Japan
  5. Hannover Medical School, Germany
  6. University of Illinois at Chicago, United States
  7. Beth Israel Deaconess Medical Center and Harvard Medical School, United States

Abstract

Background: Obesity is widespread and linked to various co-morbidities. Bariatric surgery has been identified as the only effective treatment, promoting sustained weight loss and the remission of co-morbidities.

Methods: Metabolic profiling was performed on diet induced obese (DIO) mice, lean mice and DIO mice that underwent sleeve gastrectomies. In addition, mice were subjected to i.p. injections with TDCA and valine. Indirect calorimetry was performed to assess food intake and energy expenditure. Expression of appetite regulating hormones was assessed through quantification of isolated RNA from dissected hypothalamus tissue. Subsequently, i.p. injections with an MCH antagonist and intrathecal administration of melanin-concentrating hormone were performed and weight loss was monitored.

Results: Mass-spectrometric metabolomic profiling revealed significantly reduced systemic levels of TDCA and L-valine in DIO mice. TDCA and L-Valine levels were restored after sleeve gastrectomies (SGx) in both human and mice to levels comparable with lean controls. Systemic treatment with TDCA and valine induced a profound weight loss analogous to effects observed after SGx. Utilizing indirect calorimetry, we confirmed reduced food intake as causal for TDCA/valine-mediated weight loss via a central inhibition of the melanin-concentrating hormone.

Conclusions: In summary, we identified restored TDCA/valine levels as an underlying mechanism of SGx-derived effects on weight loss. Of translational relevance, TDCA and L-valine are presented as novel agents promoting weight loss while reversing obesity-associated metabolic disorders.

Data availability

All relevant data supporting the findings of this study are available as source data files.

Article and author information

Author details

  1. Markus Quante

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jasper Iske

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timm Heinbokel

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bhavna N Desai

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hector Rodriguez Cetina Biefer

    Departrment of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yeqi Nian

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Felix Krenzien

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tomohisa Matsunaga

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hirofumi Uehara

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ryoichi Maenosono

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Haruhito Azuma

    Urology, Osaka Medical College, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Johann Pratschke

    Department of Visceral, Abdominal and Transplantation Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christine S Falk

    Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Tammy Lo

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Sheu

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ali Tavakkoli

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Reza Abdi

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. David L Perkins

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Maria-Luisa Alegre

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alexander S Banks

    Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1787-6925
  21. Hao Zhou

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Abdallah Elkhal

    Surgery, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Stefan G Tullius

    Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Boston, United States
    For correspondence
    stullius@partners.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3058-3166

Funding

National Institutes of Health (UO-1 A1 132898)

  • Stefan G Tullius

Deutsche Forschungsgemeinschaft (QU 420/1-1)

  • Markus Quante

Deutsche Forschungsgemeinschaft (HE 7457/1-1)

  • Timm Heinbokel

Deutsche Forschungsgemeinschaft (KR 4362/1-1)

  • Felix Krenzien

Chinese Scholarship Council (201606370196)

  • Yeqi Nian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use and care were in accordance with institutional and National Institutes of Health guidelines. The study protocol was approved by the Brigham and Women´s Hospital Institutional Animal Care and use Committee (IACUC) animal protocol (animal protocol 2016N000371).

Human subjects: Serum samples from patients prior to and 3 months post sleeve gastrectomy were obtained with approval of the Brigham and Women's Hospital (BWH) Institutional Review Board and through cooperation with Dr. Eric G. Sheu and the Center for Metabolic and Bariatric Surgery at BWH. Informed consent was obtained from all patients and samples were collected following BWH ethical regulations.

Copyright

© 2021, Quante et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,283
    views
  • 178
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus Quante
  2. Jasper Iske
  3. Timm Heinbokel
  4. Bhavna N Desai
  5. Hector Rodriguez Cetina Biefer
  6. Yeqi Nian
  7. Felix Krenzien
  8. Tomohisa Matsunaga
  9. Hirofumi Uehara
  10. Ryoichi Maenosono
  11. Haruhito Azuma
  12. Johann Pratschke
  13. Christine S Falk
  14. Tammy Lo
  15. Eric Sheu
  16. Ali Tavakkoli
  17. Reza Abdi
  18. David L Perkins
  19. Maria-Luisa Alegre
  20. Alexander S Banks
  21. Hao Zhou
  22. Abdallah Elkhal
  23. Stefan G Tullius
(2021)
Restored TDCA and valine levels imitate the effects of bariatric surgery
eLife 10:e62928.
https://doi.org/10.7554/eLife.62928

Share this article

https://doi.org/10.7554/eLife.62928

Further reading

    1. Medicine
    2. Neuroscience
    Tomohiro Umeda, Ayumi Sakai ... Takami Tomiyama
    Research Article

    Neurodegenerative diseases are age-related disorders characterized by the cerebral accumulation of amyloidogenic proteins, and cellular senescence underlies their pathogenesis. Thus, it is necessary for preventing these diseases to remove toxic proteins, repair damaged neurons, and suppress cellular senescence. As a source for such prophylactic agents, we selected zizyphi spinosi semen (ZSS), a medicinal herb used in traditional Chinese medicine. Oral administration of ZSS hot water extract ameliorated Aβ and tau pathology and cognitive impairment in mouse models of Alzheimer’s disease and frontotemporal dementia. Non-extracted ZSS simple crush powder showed stronger effects than the extract and improved α-synuclein pathology and cognitive/motor function in Parkinson’s disease model mice. Furthermore, when administered to normal aged mice, the ZSS powder suppressed cellular senescence, reduced DNA oxidation, promoted brain-derived neurotrophic factor expression and neurogenesis, and enhanced cognition to levels similar to those in young mice. The quantity of known active ingredients of ZSS, jujuboside A, jujuboside B, and spinosin was not proportional to the nootropic activity of ZSS. These results suggest that ZSS simple crush powder is a promising dietary material for the prevention of neurodegenerative diseases and brain aging.

    1. Medicine
    Hyun Beom Song, Laura Campello ... Anand Swaroop
    Research Advance

    Inherited retinal degenerations (IRDs) constitute a group of clinically and genetically diverse vision-impairing disorders. Retinitis pigmentosa (RP), the most common form of IRD, is characterized by gradual dysfunction and degeneration of rod photoreceptors, followed by the loss of cone photoreceptors. Recently, we identified reserpine as a lead molecule for maintaining rod survival in mouse and human retinal organoids as well as in the rd16 mouse, which phenocopy Leber congenital amaurosis caused by mutations in the cilia-centrosomal gene CEP290 (Chen et al., 2023). Here, we show the therapeutic potential of reserpine in a rhodopsin P23H rat model of autosomal dominant RP. At postnatal day (P) 68, when males and females are analyzed together, the reserpine-treated rats exhibit higher rod-derived scotopic b-wave amplitudes compared to the controls with little or no change in scotopic a-wave or cone-derived photopic b-wave. Interestingly, the reserpine-treated female rats display enhanced scotopic a- and b-waves and photopic b-wave responses at P68, along with a better contrast threshold and increased outer nuclear layer thickness. The female rats demonstrate better preservation of both rod and cone photoreceptors following reserpine treatment. Retinal transcriptome analysis reveals sex-specific responses to reserpine, with significant upregulation of phototransduction genes and proteostasis-related pathways, and notably, genes associated with stress response. This study builds upon our previously reported results reaffirming the potential of reserpine for gene-agnostic treatment of IRDs and emphasizes the importance of biological sex in retinal disease research and therapy development.