Tendon and motor phenotypes in the Crtap-/- mouse model of recessive Osteogenesis Imperfecta

  1. Matthew William Grol  Is a corresponding author
  2. Nele A Haelterman
  3. Joohyun Lim
  4. Elda M Munivez
  5. Marilyn Archer
  6. David M Hudson
  7. Sara F Tufa
  8. Douglas R Keene
  9. Kevin Lei
  10. Dongsu Park
  11. Cole D Kuzawa
  12. Catherine G Ambrose
  13. David R Eyre
  14. Brendan H Lee  Is a corresponding author
  1. University of Western Ontario, Canada
  2. Baylor College of Medicine, United States
  3. University of Washington, United States
  4. Shriners Hospital for Children, United States
  5. The University of Texas Health Sciences Center at Houston, United States

Abstract

Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-b, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased aSMA, MMP2, and phospho-NFkB in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice – a phenotype that correlates with the tendon pathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 6 that include full lists of differentially expressed genes resulting from RNA-seq analysis of Achilles and patellar tendons from 1- month wild-type and Crtap-/- mice. For each, a list of predicted upstream regulators identified using Ingenuity Pathway Analysis is also included.

Article and author information

Author details

  1. Matthew William Grol

    Physiology and Pharmacology, University of Western Ontario, London, Canada
    For correspondence
    mgrol2@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6514-9066
  2. Nele A Haelterman

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joohyun Lim

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9670-806X
  4. Elda M Munivez

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marilyn Archer

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Hudson

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara F Tufa

    Shriners Hospital for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas R Keene

    Shriners Hospital for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin Lei

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dongsu Park

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cole D Kuzawa

    Orthopaedic Surgery, The University of Texas Health Sciences Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Catherine G Ambrose

    Orthopaedic Surgery, The University of Texas Health Sciences Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. David R Eyre

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Brendan H Lee

    Baylor College of Medicine, Houston, United States
    For correspondence
    blee@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8573-4211

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD024064)

  • Brendan H Lee

Rolanette and Berdon Lawrence Bone Disease Program of Texas

  • Brendan H Lee

BCM Center for Skeletal Medicine and Biology

  • Brendan H Lee

Pamela and David Ott Center for Heritable Disorders of Connective Tissue

  • Brendan H Lee

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR373318)

  • David R Eyre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) protocols (#AN-1506) at Baylor College of Medicine.

Copyright

© 2021, Grol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,302
    views
  • 168
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew William Grol
  2. Nele A Haelterman
  3. Joohyun Lim
  4. Elda M Munivez
  5. Marilyn Archer
  6. David M Hudson
  7. Sara F Tufa
  8. Douglas R Keene
  9. Kevin Lei
  10. Dongsu Park
  11. Cole D Kuzawa
  12. Catherine G Ambrose
  13. David R Eyre
  14. Brendan H Lee
(2021)
Tendon and motor phenotypes in the Crtap-/- mouse model of recessive Osteogenesis Imperfecta
eLife 10:e63488.
https://doi.org/10.7554/eLife.63488

Share this article

https://doi.org/10.7554/eLife.63488

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.