Collateral sensitivity associated with antibiotic resistance plasmids

  1. Cristina Herencias
  2. Jerónimo Rodríguez-Beltrán  Is a corresponding author
  3. Ricardo León-Sampedro
  4. Aida Alonso-del Valle
  5. Jana Palkovičová
  6. Rafael Cantón
  7. Álvaro San Millán  Is a corresponding author
  1. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
  2. Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Czech Republic
  3. Centro Nacional de Biotecnología-CSIC, Spain

Abstract

Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and S2.Sequencing data have been deposited in the Sequence Read Archive (SRA) repository, BioProject ID: PRJNA644278 (https://www.ncbi.nlm.nih.gov/bioproject/644278).

The following data sets were generated

Article and author information

Author details

  1. Cristina Herencias

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerónimo Rodríguez-Beltrán

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    For correspondence
    jeronimo.rodriguez.beltran@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3014-1229
  3. Ricardo León-Sampedro

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5317-8310
  4. Aida Alonso-del Valle

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Jana Palkovičová

    Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Rafael Cantón

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Álvaro San Millán

    Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
    For correspondence
    asanmillan@cnb.csic.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (ERC-StG 757440-PLASREVOLUTION)

  • Álvaro San Millán

Instituto de Salud Carlos III (PI16-00860)

  • Álvaro San Millán

Agencia Estatal de Investigación (IJC2018-035146-I)

  • Jerónimo Rodríguez-Beltrán

Instituto de Salud Carlos III (MS15-00012)

  • Álvaro San Millán

Comunidad Autonoma de Madrid (PEJD-2018-POST/BMD-8016)

  • Cristina Herencias

European Commission (R-GNOSIS-FP7-HEALTH-F3-2011-282512)

  • Rafael Cantón

Instituto de Salud Carlos III (REIPIR D16/0016/0011)

  • Rafael Cantón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Herencias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,986
    views
  • 663
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristina Herencias
  2. Jerónimo Rodríguez-Beltrán
  3. Ricardo León-Sampedro
  4. Aida Alonso-del Valle
  5. Jana Palkovičová
  6. Rafael Cantón
  7. Álvaro San Millán
(2021)
Collateral sensitivity associated with antibiotic resistance plasmids
eLife 10:e65130.
https://doi.org/10.7554/eLife.65130

Share this article

https://doi.org/10.7554/eLife.65130

Further reading

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.