Testosterone pulses paired with a location induce a place preference to the nest of a monogamous mouse under field conditions

  1. Radmila Petric  Is a corresponding author
  2. Matina C Kalcounis-Rueppell
  3. Catherine A Marler
  1. University of North Carolina at Chapel Hill, United States
  2. University of Alberta, Canada
  3. University of Wisconsin-Madison, United States

Abstract

Changing social environments such as the birth of young or aggressive encounters present a need to adjust behavior. Previous research examined how long-term changes in steroid hormones mediate these adjustments. We tested the novel concept that the rewarding effects of transient testosterone pulses (T-pulses) in males after social encounters alters their spatial distribution on a territory. In free-living monogamous California mice (Peromyscus californicus), males administered three T-injections at the nest spent more time at the nest than males treated with placebo injections. This mimics T-induced place preferences in the laboratory. Female mates of T-treated males spent less time at the nest but the pair produced more vocalizations and call types than controls. Traditionally, transient T-changes were thought to have transient behavioral effects. Our work demonstrates that in the wild, when T-pulses occur in a salient context such as a territory, the behavioral effects last days after T-levels return to baseline.

Data availability

All data analysed for this study are included in the manuscript and supporting files. Source data files have been provided for all figures.Petric, Radmila. 2021. "T-Pulses at the Nest." OSF. osf.io/qknze.doi.org/10.17605/OSF.IO/QKNZE

Article and author information

Author details

  1. Radmila Petric

    Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    r_petric@uncg.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2651-3328
  2. Matina C Kalcounis-Rueppell

    Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine A Marler

    Psychology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1355163)

  • Matina C Kalcounis-Rueppell
  • Catherine A Marler

Sigma Xi (Spring 2018)

  • Radmila Petric

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and use guidelines were followed and research protocols for this study were approved by the University of North Carolina at Greensboro and University of Wisconsin-Madison Institutional Animal Care and Use Committees (IACUC; UNCG 12-004 and UWM L005047-A01) and by California Department of Fish and Wildlife under Scientific Collection Permits (SC-9663 and SC-13190).

Copyright

© 2022, Petric et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 793
    views
  • 85
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radmila Petric
  2. Matina C Kalcounis-Rueppell
  3. Catherine A Marler
(2022)
Testosterone pulses paired with a location induce a place preference to the nest of a monogamous mouse under field conditions
eLife 11:e65820.
https://doi.org/10.7554/eLife.65820

Share this article

https://doi.org/10.7554/eLife.65820

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.