Abstract

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response, by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, that is activated independently of BAT thermogenic function.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Renata O Pereira

    Internal Medicine, University of Iowa, Iowa City, United States
    For correspondence
    renata-pereira@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-4669
  2. Alex Marti

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Angela Crystal Olvera

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satya Murthy Tadinada

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Hartwick Bjorkman

    Obstetrics and Gynecology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric Thomas Weatherford

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Donald A Morgan

    Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Westphal

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pooja H Patel

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5345-0158
  10. Ana Karina Kirby

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rana Hewezi

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. William Bùi Trần

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Luis Miguel García-Peña

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8718-6490
  14. Rhonda A Souvenir

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8880-2483
  15. Monika Mittal

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Christopher M Adams

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Kamal Rahmouni

    Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Matthew J Potthoff

    Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. E Dale Abel

    Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5290-0738

Funding

National Institutes of Health (HL127764)

  • E Dale Abel

National Institutes of Health (HL112413)

  • E Dale Abel

American Heart Association (20SFRN35120123)

  • E Dale Abel

American Heart Association (15SDG25710438)

  • Renata O Pereira

National Institutes of Health (DK125405)

  • Renata O Pereira

National Institutes of Health (T32DK112751)

  • Sarah Hartwick Bjorkman

National Institutes of Health (1R25GM116686)

  • Luis Miguel García-Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#8051408 and 0032294) of the University of Iowa.

Copyright

© 2021, Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,276
    views
  • 545
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renata O Pereira
  2. Alex Marti
  3. Angela Crystal Olvera
  4. Satya Murthy Tadinada
  5. Sarah Hartwick Bjorkman
  6. Eric Thomas Weatherford
  7. Donald A Morgan
  8. Michael Westphal
  9. Pooja H Patel
  10. Ana Karina Kirby
  11. Rana Hewezi
  12. William Bùi Trần
  13. Luis Miguel García-Peña
  14. Rhonda A Souvenir
  15. Monika Mittal
  16. Christopher M Adams
  17. Kamal Rahmouni
  18. Matthew J Potthoff
  19. E Dale Abel
(2021)
OPA1 deletion in brown adipose tissue Improves thermoregulation and systemic metabolism via FGF21
eLife 10:e66519.
https://doi.org/10.7554/eLife.66519

Share this article

https://doi.org/10.7554/eLife.66519

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.