A novel gene ZNF862 causes hereditary gingival fibromatosis

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li  Is a corresponding author
  14. Wei Li  Is a corresponding author
  1. Medical School of Nanjing University, China
  2. BGI Genomics, China
  3. Peking University, China

Abstract

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here we report thirteen individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G>A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here for the first time we identify the physiological role of ZNF862 for the association with the HGF.

Data availability

The sequencing data supporting this study have been deposited in the China Genebank Nucleotide Sequence Archive (https://db.cngb.org/cnsa, accession number CNP0000995).

Article and author information

Author details

  1. Juan Wu

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  2. Dongna Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Dongna Chen, is employee of BGI Genomics..
  3. Hui Huang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Hui Huang, is employee of BGI Genomics..
  4. Ning Luo

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  5. Huishuang Chen

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Huishuang Chen, is employee of BGI Genomics..
  6. Junjie Zhao

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  7. Yanyan Wang

    Clinical research, BGI Genomics, Shenzhen, China
    Competing interests
    Yanyan Wang, is employee of BGI Genomics..
  8. Tian Zhao

    Department of Periodontology, Medical School of Nanjing University, shenzhen, China
    Competing interests
    No competing interests declared.
  9. Siyuan Huang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  10. Yang Ren

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  11. Teng Zhai

    Clinical research, BGI Genomics, shenzhen, China
    Competing interests
    Teng Zhai, is employee of BGI Genomics..
  12. Weibin Sun

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    Competing interests
    No competing interests declared.
  13. Houxuan Li

    Department of Periodontology, Medical School of Nanjing University, Nanjing, China
    For correspondence
    lihouxuan3435_0@163.com
    Competing interests
    No competing interests declared.
  14. Wei Li

    Clinical Research, BGI Genomics, Shen zhen, China
    For correspondence
    liwei10@genomics.cn
    Competing interests
    Wei Li, is employee of BGI Genomics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4475-531X

Funding

National Natural Science Foundation of China (51772144)

  • Houxuan Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The usage and handling of human samples in this study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI (IRB No. 19059) and the written informed consent obtained from each participant. Clinical investigation was performed in accordance with the Declaration of Helsinki.

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Wu
  2. Dongna Chen
  3. Hui Huang
  4. Ning Luo
  5. Huishuang Chen
  6. Junjie Zhao
  7. Yanyan Wang
  8. Tian Zhao
  9. Siyuan Huang
  10. Yang Ren
  11. Teng Zhai
  12. Weibin Sun
  13. Houxuan Li
  14. Wei Li
(2022)
A novel gene ZNF862 causes hereditary gingival fibromatosis
eLife 11:e66646.
https://doi.org/10.7554/eLife.66646

Share this article

https://doi.org/10.7554/eLife.66646

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.