Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain
Abstract
Doublecortin (DCX) is a microtubule (MT) associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX-MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-EM and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its-tail, our study shows that lattice-driven self-assembly is an important property of DCX.
Data availability
The DCX-MT integrative models, including final structures, modeling details, and input experimental data, were deposited into the PDB-dev repository for integrative models (www.pdb-dev.com) as follows: Dimeric DCX-MT (diagonal1): PDBDEV_00000071 Dimeric DCX-MT (lateral): PDBDEV_00000072 Dimeric DCX-MT (longitudinal): PDBDEV_00000073 Dimeric DCX-MT (diagonal2): PDBDEV_00000074 All LC-MS/MS data generated to support the findings of this study have been deposited with the ProteomeXchange Consortium with the dataset identifier PXD033167.
-
DCX-MT crosslinkingProteomeXchange, PXD033167.
Article and author information
Author details
Funding
Canarie (RS-326)
- David C Schriemer
Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-04879)
- David C Schriemer
Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-04876)
- Gary Brouhard
Canadian Institutes of Health Research (PJT-148702)
- Gary Brouhard
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Rafiei et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,092
- views
-
- 165
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Neuroscience
As the world population ages, new molecular targets in aging and Alzheimer’s disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with the accumulation of phospho-tau immunostaining contained rG4s, rG4 structure can drive tau aggregation, and rG4 staining density depended on APOE genotype in the human tissue examined. Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation is linked to proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Nature has inspired the design of improved inhibitors for cancer-causing proteins.