Thalamocortical axons control the cytoarchitecture of neocortical layers by area-specific supply of VGF

  1. Haruka Sato  Is a corresponding author
  2. Jun Hatakeyama
  3. Takuji Iwasato
  4. Kimi Araki
  5. Nobuhiko Yamamoto
  6. Kenji Shimamura  Is a corresponding author
  1. Kumamoto University, Japan
  2. National Institute of Genetics, Japan
  3. Osaka University, Japan

Abstract

Neuronal abundance and thickness of each cortical layer is specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source data files have been provided for Figures 1-7 and Figure 1-figure supplement 1, Figure 2-figure supplement 1, 2, Figure 5-figure supplment 2, Figure 7-figure supplement 1, 2.

Article and author information

Author details

  1. Haruka Sato

    Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
    For correspondence
    stharuka@kumamoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6839-0146
  2. Jun Hatakeyama

    Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takuji Iwasato

    Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kimi Araki

    Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Nobuhiko Yamamoto

    Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenji Shimamura

    Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
    For correspondence
    simamura@kumamoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7102-6513

Funding

Japan Society for the Promotion of Science (KM101-2587054400)

  • Haruka Sato

Ministry of Education, Culture, Sports, Science and Technology (JP16H06276)

  • Kimi Araki

Ministry of Education, Culture, Sports, Science and Technology (18GS0329-01)

  • Kenji Shimamura

Ministry of Education, Culture, Sports, Science and Technology (JP16K07375)

  • Kenji Shimamura

Japan Society for the Promotion of Science (KM100-2633200)

  • Haruka Sato

Japan Society for the Promotion of Science (KM101-18K1483900)

  • Haruka Sato

Ministry of Education, Culture, Sports, Science and Technology (JP06J08049)

  • Jun Hatakeyama

Ministry of Education, Culture, Sports, Science and Technology (JP21870030)

  • Jun Hatakeyama

Ministry of Education, Culture, Sports, Science and Technology (JP24790288)

  • Jun Hatakeyama

Ministry of Education, Culture, Sports, Science and Technology (JP15K19011)

  • Jun Hatakeyama

Ministry of Education, Culture, Sports, Science and Technology (JP16H01449)

  • Jun Hatakeyama

Ministry of Education, Culture, Sports, Science and Technology (JP17H05771)

  • Jun Hatakeyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the guidelines for laboratory animals of Kumamoto University and the Japan Neuroscience Society. All of the animals were handled according to approved institutional animal care and protocols by the Committee on the Ethics of Animal Experiments of Kumamoto University (Permit Number: 27-124, A29-080, 2019-110, 2020-055). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Sato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,970
    views
  • 320
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haruka Sato
  2. Jun Hatakeyama
  3. Takuji Iwasato
  4. Kimi Araki
  5. Nobuhiko Yamamoto
  6. Kenji Shimamura
(2022)
Thalamocortical axons control the cytoarchitecture of neocortical layers by area-specific supply of VGF
eLife 11:e67549.
https://doi.org/10.7554/eLife.67549

Share this article

https://doi.org/10.7554/eLife.67549

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.