Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts

Abstract

The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Calvin Jon A Leonen

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3003-9021
  2. Miho Shimada

    Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline E Weller

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomoyoshi Nakadai

    Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter L Hsu

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth L Tyson

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arpit Mishra

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrick M M Shelton

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Martin Sadilek

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. R David Hawkins

    Medicine and Genome Sciences, University Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2997-9457
  11. Ning Zheng

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert G Roeder

    The Rockefeller University, New York, United States
    For correspondence
    roeder@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Champak Chatterjee

    Chemistry, University of Washington, Seattle, United States
    For correspondence
    champak1@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-4438

Funding

NIH NCI (R01CA234561)

  • Robert G Roeder

NIH NIDDK (R01DK071900)

  • Robert G Roeder

NIH NIGMS (R01GM110430)

  • Champak Chatterjee

NIH NIGMS (T32GM008268)

  • Calvin Jon A Leonen

NSF GRFP (DGH-1256082)

  • Caroline E Weller

NIH NICHD (R01HD097408)

  • Ning Zheng

NIH NIDDK (R01DK103667)

  • R David Hawkins

NIH NIAMS (R01AR065952)

  • R David Hawkins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Leonen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,958
    views
  • 274
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calvin Jon A Leonen
  2. Miho Shimada
  3. Caroline E Weller
  4. Tomoyoshi Nakadai
  5. Peter L Hsu
  6. Elizabeth L Tyson
  7. Arpit Mishra
  8. Patrick M M Shelton
  9. Martin Sadilek
  10. R David Hawkins
  11. Ning Zheng
  12. Robert G Roeder
  13. Champak Chatterjee
(2021)
Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts
eLife 10:e67952.
https://doi.org/10.7554/eLife.67952

Share this article

https://doi.org/10.7554/eLife.67952

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.